Jet evolution in a dense QCD medium: I

Edmond Iancu IPhT Saclay & CNRS

Heavy ion collisions @ the LHC

- Pb+Pb collisions at the LHC: $\sim 20,000$ hadrons in the detectors
- Produced via parton fragmentation & hadronisation
- At early stages, all such partons were confined in a small region in space-time ⇒ hot and dense partonic matter

Partonic matter in a Heavy Ion Collision

• Prior to the collision: 2 Lorentz-contracted nuclei ('pancakes')

- 'Color Glass Condensate' : highly coherent form of gluonic matter
- Right after the collision: non-equilibrium partonic matter
 - 'Glasma' : color fields break into partons
- At later stages ($\Delta t\gtrsim 1$ fm/c) : local thermal equilibrium
 - 'Quark-Gluon Plasma' (QGP)
- Final stage ($\Delta t\gtrsim 10~{\rm fm/c}$) : hadrons
 - 'final event', or 'particle production'

Partonic matter in a Heavy Ion Collision

- Prior to the collision: 2 Lorentz-contracted nuclei ('pancakes')
 - 'Color Glass Condensate' : highly coherent form of gluonic matter
- Right after the collision: non-equilibrium partonic matter
 - 'Glasma' : color fields break into partons
- At later stages ($\Delta t\gtrsim 1$ fm/c) : local thermal equilibrium
 - 'Quark–Gluon Plasma' (QGP)
- How to study these ephemeral partonic stages ?

Hard probes

• A space-time picture of a heavy ion collision

- $\bullet\,$ Hard partons, photons, leptons created at early times : $\tau \lesssim 1 \ {\rm fm/c}$
- Interact with the surrounding medium on their way to the detectors

Jet quenching

• Hard partons are typically created in pairs which propagate back-to-back in the transverse plane

- 'Jet': 'leading particle' + 'products of fragmentation'
- AA collisions : jet propagation and fragmentation can be modified by the surrounding medium: 'jet quenching'

Di-jets in p+p collisions at the LHC

Di-hadron azimuthal correlations

 \bullet Distribution of pairs of particles w.r.t. the relative angle $\Delta\Phi$ in the transverse plane

- Di-hadron azimuthal correlations at RHIC:
 - p+p or d+Au : a peak at $\Delta \Phi = \pi$ $(p_1 + p_2 \simeq 0)$

Di-hadron azimuthal correlations

• Distribution of pairs of particles w.r.t. the relative angle $\Delta \Phi$ in the transverse plane

- Di-hadron azimuthal correlations at RHIC:
 - Au+Au : the away jet has disappeared !
- Collisions in the medium lead to transverse momentum broadening

Nuclear modification factor

• Use p+p collisions as a benchmark for particle production

$$R_{\rm A+A} \equiv rac{1}{A^2} rac{{
m d}N_{\rm A+A}/{
m d}^2 p_\perp {
m d}\eta}{{
m d}N_{
m p+p}/{
m d}^2 p_\perp {
m d}\eta}$$

• No suppression for photons, small suppression in peripheral collisions

Nuclear modification factor

• Use p+p collisions as a benchmark for particle production

$$R_{\rm A+A} \equiv \frac{1}{A^2} \frac{{\rm d}N_{\rm A+A}/{\rm d}^2 p_\perp {\rm d}\eta}{{\rm d}N_{\rm p+p}/{\rm d}^2 p_\perp {\rm d}\eta}$$

• Strong suppression $(R_{AA} \leq 0.2)$ in central collisions

Nuclear modification factor

• Use p+p collisions as a benchmark for particle production

$$R_{\rm A+A} \equiv \frac{1}{A^2} \frac{{\rm d}N_{\rm A+A}/{\rm d}^2 p_\perp {\rm d}\eta}{{\rm d}N_{\rm p+p}/{\rm d}^2 p_\perp {\rm d}\eta}$$

• Large energy loss via interactions in the medium

Energy loss

• Hadrons measured with an energy E have been actually produced with a larger energy $E + \epsilon$

$$\frac{\mathrm{d}\sigma^{\mathrm{vac}}(E)}{\mathrm{d}E} = \int \mathrm{d}\epsilon \,\mathcal{P}(\epsilon) \,\frac{\mathrm{d}\sigma^{\mathrm{vac}}(E+\epsilon)}{\mathrm{d}E}$$
$$\frac{\mathrm{d}\sigma^{\mathrm{vac}}(E)}{\mathrm{d}E} \sim \frac{1}{E^n}, \quad n = 7 \div 10$$

- $\mathcal{P}(\epsilon)$: probability density for losing an energy ϵ
- Large n favors small $\epsilon \Longrightarrow$ one typically measures the leading particle

Di-jet asymmetry (ATLAS)

- Central Pb+Pb: 'mono-jet' events
- The secondary jet cannot be distinguished from the background: $E_{T1} \ge 100$ GeV, $E_{T2} > 25$ GeV

Di-jet asymmetry (CMS)

- Additional energy imbalance as compared to p+p : 20 to 30 GeV
- Detailed studies show that the 'missing energy' is carried by many soft (p_⊥ < 2 GeV) hadrons propagating at large angles
 > a surprising fragmentation pattern from the standard viewpoint of pQCD

Jet quenching in pQCD

- Can one understand such phenomena from first principles ?
- In perturbative QCD, they all find a common denominator: incoherent multiple scattering off the medium constituents

- random kicks provide transverse momentum broadening
- medium induced radiation leading to large energy loss
- large emission angles, especially for the softest emitted quanta
- color decoherence leading to enhanced jet fragmentation

- Assumes that the couplings are weak for all elementary processes
 - scattering in the medium, emission vertices

- Assumes that the couplings are weak for all elementary processes
- Justified (by asymptotic freedom) if the jet is sufficiently energetic and if the medium is sufficiently dense
 - N.B. not clear that this medium is weakly coupled for all purposes
 - the physics of jet quenching is biased towards hard momentum transfers

- Assumes that the couplings are weak for all elementary processes
- Justified (by asymptotic freedom) if the jet is sufficiently energetic and if the medium is sufficiently dense
- Even if the coupling is weak, the pQCD treatment remains elaborated
 - no naive perturbative expansion in powers of $\alpha_s=g^2/4\pi$
 - high density effects (screening, multiple scattering, ...) and jet evolution (soft multiple emissions, large radiative corrections) must be resummed to all orders in α_s

- Assumes that the couplings are weak for all elementary processes
- Justified (by asymptotic freedom) if the jet is sufficiently energetic and if the medium is sufficiently dense
- Even if the coupling is weak, the pQCD treatment remains elaborated
- Reorganizations of the perturbation theory which might be ambiguous and are certainly complicated \implies several approaches in the literature
 - here : mostly the 'BDMPSZ approach' to medium-induced gluon radiation and its subsequent developments by many authors

- Assumes that the couplings are weak for all elementary processes
- Justified (by asymptotic freedom) if the jet is sufficiently energetic and if the medium is sufficiently dense
- Even if the coupling is weak, the pQCD treatment remains elaborated
- Reorganizations of the perturbation theory which might be ambiguous and are certainly complicated \implies several approaches in the literature
- Important simplifications due to the high energy kinematics
 - $\bullet\,$ eikonal approximation, 'frozen' correlations, instantaneous exchanges $\ldots\,$

- Assumes that the couplings are weak for all elementary processes
- Justified (by asymptotic freedom) if the jet is sufficiently energetic and if the medium is sufficiently dense
- Even if the coupling is weak, the pQCD treatment remains elaborated
- Reorganizations of the perturbation theory which might be ambiguous and are certainly complicated \implies several approaches in the literature
- Important simplifications due to the high energy kinematics
- Additional, simplifying, assumptions about the nature of the medium
 - quark-gluon plasma in thermal equilibrium
 - can be relaxed for more realistic, phenomenological, studies

- Assumes that the couplings are weak for all elementary processes
- Justified (by asymptotic freedom) if the jet is sufficiently energetic and if the medium is sufficiently dense
- Even if the coupling is weak, the pQCD treatment remains elaborated
- Reorganizations of the perturbation theory which might be ambiguous and are certainly complicated \implies several approaches in the literature
- Important simplifications due to the high energy kinematics
- Additional, simplifying, assumptions about the nature of the medium
- So far, mostly a leading-order formalism (including resummations), but some next-to-leading order corrections are known as well, concerning the medium, the jets, and their mutual interactions
 - see also the lectures by Zhong-bo Kang and Jacopo Ghiglieri

Outline

- L1: Transverse momentum broadening
 - most calculations will be explicit on the slides
- L2: Medium-induced gluon radiation
 - BDMPSZ mechanism
 - heuristic discussion: physical considerations, parametric estimates
- L3: Jet evolution via multiple branchings
 - some recent developments (again, heuristically)
 - color decoherence, wave turbulence, relation to di-jet asymmtery
- L3 (cont.) : NLO corrections to the jet quenching parameter

p_{\perp} -broadening: Introduction (1)

• An energetic quark acquires a transverse momentum p_{\perp} via collisions in the medium, after propagating over a distance L

- Weakly coupled medium \Rightarrow quasi independent scattering centers
 - \triangleright successive collisions give random kicks
 - ho Brownian motion in p_{\perp} : $\langle p_{\perp}^2
 angle \simeq \hat{q} \, \Delta t$
- \hat{q} : the 'jet quenching parameter' (a medium transport coefficient) \triangleright a fundamental quantity for what follows

p_{\perp} -broadening: Introduction (2)

• An energetic quark acquires a transverse momentum p_{\perp} via collisions in the medium, after propagating over a distance L

- A simple estimate: kinetic theory
 - parton mean free path $\ell\,\sim\,1/n\sigma$
 - n : density of medium constituents; σ : elastic cross-section
 - average (momentum)² transfer per scattering μ^2

$$\hat{q} \simeq rac{\mu^2}{\ell} = n \sigma \mu^2$$

p_{\perp} -broadening: Introduction (2)

• An energetic quark acquires a transverse momentum p_{\perp} via collisions in the medium, after propagating over a distance L

- A simple estimate: kinetic theory
 - parton mean free path $\ell\,\sim\,1/n\sigma$
 - n : density of medium constituents; σ : elastic cross–section
 - average (momentum)² transfer per scattering μ^2

$$\hat{q} \simeq rac{\mu^2}{\ell} = n \sigma \mu^2 = n \int \mathrm{d}^2 oldsymbol{k} \, oldsymbol{k}^2 \, rac{\mathrm{d} \sigma_\mathrm{el}}{\mathrm{d}^2 oldsymbol{k}}$$

p_{\perp} -broadening: Introduction (3)

- How to study the propagation of an energetic 'probe' (quark, gluon, jet) through a dense QCD medium ?
 - \triangleright the medium can be a quark-gluon plasma with temperature T, but the energetic probe is **not** a part of the thermal distribution !
 - \triangleright it has an (initial) energy $E \gg T$

• Difficulty : multiple scattering off the medium constituents >> resummation of the perturbative series to all orders

p_{\perp} -broadening: Introduction (3)

- How to study the propagation of an energetic 'probe' (quark, gluon, jet) through a dense QCD medium ?
 - \triangleright the medium can be a quark-gluon plasma with temperature T, but the energetic probe is **not** a part of the thermal distribution !
 - \triangleright it has an (initial) energy $E \gg T$

• Main simplification at high-energy : eikonal approximation

 \vartriangleright the probe transverse coordinate is not modified by the interactions

A parenthesis on kinematics: Light-cone variables

• For relativistic particles $(|v_z| \simeq 1)$, it is useful to use LC variables

• Our hard probe: a rapid right-mover with $E \simeq p_z \gg p_{\perp} \ (m \simeq 0)$

• $z \simeq t \implies x^- \simeq 0$ (Lorentz contraction) & $x^+ \simeq \sqrt{2}t$ (LC time)

• mass-shell condition: $p^2 = 2p^+p^- - p^2 = 0$ $p^+ \simeq \sqrt{2}E \gg p_\perp \gg p^- = \frac{p_\perp^2}{2p^+}$

The *S*-matrix

• The energetic probe (say, a quark) has a color current which couples to the color field generated by the constituents of the medium.

 $\mathcal{L}_{\rm int}(x) = j^{\mu}_a(x) A^a_{\mu}(x), \qquad j^{\mu}_a(x) = g \bar{\psi}(x) \gamma^{\mu} t^a \psi(x)$

• The quark evolution operator in the interaction representation :

$$\begin{split} \mathrm{e}^{-\mathrm{i}\hat{H}t} \,=\, \mathrm{e}^{-\mathrm{i}\hat{H}_0t}\,\hat{S}(t)\,, \quad \hat{S}(t) \,=\, \mathrm{T}\,\mathrm{e}^{\mathrm{i}\int_{-\infty}^t \mathrm{d}t'\int \mathrm{d}^3\mathbf{x}\,\mathcal{L}_{\mathrm{int}}(t',\mathbf{x})}\\ \bullet \text{ High-energy formalism: replace }t\,\to\,x^+ \text{ and }\mathrm{d}^3\mathbf{x}\to\mathrm{d}x^-\mathrm{d}^2\boldsymbol{x} \end{split}$$

Eikonal approximation

• The individual collisions are relatively soft : $k_\perp \sim m_D \ll E$

 \rhd a straightline trajectory with $v^{\mu}=\delta^{\mu+}\,,\ x^{-}=0\,,\ {\pmb x}={\pmb x}_{0}$

 $j^{\mu}_a(x) \simeq \delta^{\mu+} g t^a \delta(x^-) \delta^{(2)}(\boldsymbol{x} - \boldsymbol{x}_0) \in \mathrm{su}(N_c)$

• The S-matrix reduces to a Wilson line in the fundamental repres.

$$\hat{S}(x^+) \simeq T \exp\left\{ ig \int_{-\infty}^{x^+} dz^+ A_a^-(z^+, \boldsymbol{x}_0) t^a \right\} \equiv V(x^+, \boldsymbol{x}_0)[A^-]$$

• Time-ordered exponential, all orders in A^- (multiple scattering)

Eikonal approximation

• The individual collisions are relatively soft : $k_\perp \sim m_D \ll E$

 \vartriangleright a straightline trajectory with $v^{\mu}=\delta^{\mu+}\,,\ x^{-}=0\,,\ \pmb{x}=\pmb{x}_{0}$

 $j_a^{\mu}(x) \simeq \delta^{\mu+} g t^a \delta(x^-) \delta^{(2)}(\boldsymbol{x} - \boldsymbol{x}_0) \in \mathrm{su}(N_c)$

• Best understood with a discretization of time: $x_n^+ = n\epsilon$, $n = 0, 1, \dots N$

 $V_N = e^{ig\epsilon A_N^-} e^{ig\epsilon A_{N-1}^-} \cdots e^{ig\epsilon A_1^-} e^{ig\epsilon A_0^-} \quad \left(A_n^- \equiv A_a^-(x_n^+)t^a\right)$

 \triangleright a sequence of infinitesimal color rotations

More on the Wilson lines

■ Elastic scattering : the S-matrix is a pure phase
 ▷ color rotation of the quark wavefunction

$$\psi_i(x^+; \boldsymbol{x}_0) = V_{ij}(x^+, \boldsymbol{x}_0) \, \psi_j(0; \boldsymbol{x}_0)$$

• Physics: precession of the quark color current

$$j_a^+(x^+) = U_{ab}(x^+) j_b^+(-\infty) \implies \left(\partial^- - igA^-\right)_{ab} j_b^+(x^+) = 0$$

[Hint : use $V^{\dagger}t^{a}V = U_{ab}t^{b}$ with U the Wilson line in the adjoint repres.]

- ... as required by covariant current conservation: $D_{\mu}j^{\mu}=0$
- The fields A_a⁻ are randomly distributed (since so are their sources)
 ▷ say, according to the thermal distribution in the case of a QGP
- Cross-sections are obtained after averaging over the background field

Transverse momentum broadening

 \bullet Direct amplitude (DA) \times Complex conjugate amplitude (CCA) :

• The p_{\perp} -spectrum of the quark after crossing the medium:

$$\frac{\mathrm{d}N}{\mathrm{d}^2\boldsymbol{p}} = \frac{1}{(2\pi)^2} \int_{\boldsymbol{r}} \mathrm{e}^{-\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{r}} \langle S_{\boldsymbol{x}\boldsymbol{y}} \rangle, \qquad S_{\boldsymbol{x}\boldsymbol{y}} \equiv \frac{1}{N_c} \operatorname{tr} \left(V_{\boldsymbol{x}} V_{\boldsymbol{y}}^{\dagger} \right)$$

 \triangleright sum over the final color indices, average over the initial ones \triangleright average over the distribution of the medium field A_a^-

Jet Summer School @ UC Davis Jet evolution in a dense QCD medium: I E. lancu, June 19, 2014 23 / 34

Transverse momentum broadening

 \bullet Direct amplitude (DA) \times Complex conjugate amplitude (CCA) :

• The p_{\perp} -spectrum of the quark after crossing the medium:

$$\frac{\mathrm{d}N}{\mathrm{d}^2 \boldsymbol{p}} = \frac{1}{(2\pi)^2} \int_{\boldsymbol{r}} \mathrm{e}^{-\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{r}} \langle S_{\boldsymbol{x}\boldsymbol{y}} \rangle , \qquad S_{\boldsymbol{x}\boldsymbol{y}} \equiv \frac{1}{N_c} \operatorname{tr} \left(V_{\boldsymbol{x}} V_{\boldsymbol{y}}^{\dagger} \right)$$

- check normalization: $\int_{\boldsymbol{p}} (\mathrm{d}N/\mathrm{d}^2 \boldsymbol{p}) = 1$ since $S_{\boldsymbol{x}\boldsymbol{y}} = 1$ when $\boldsymbol{x} = \boldsymbol{y}$

Dipole picture

 $\bullet\,$ Formally, $\langle S_{{\bm x}{\bm y}}\rangle$ is the average $S-{\rm matrix}$ for a $q\bar{q}$ color dipole

- \triangleright 'the quark at x' : the physical quark in the DA
- arphi 'the antiquark at y' : the physical quark in the CCA
- Quark cross-section \leftrightarrow dipole amplitude : a useful analogy

With due respect to the medium

- A collection of quasi-independent color charges (quarks and gluons)
 p. e.g. a nearly ideal quark-gluon plasma
- Even at weak coupling, some effects of the interactions are essential
 collective phenomena leading to the screening of the gauge interactions

$$A^{0}(\mathbf{r}) = \int \mathrm{d}^{3}\mathbf{r}' \, \frac{\mathrm{e}^{-m_{D}|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|} \, \rho(\mathbf{r}') = \int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \, \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \frac{\rho(\mathbf{k})}{\mathbf{k}^{2}+m_{D}^{2}}$$

• Weakly coupled QGP : $m_D \sim gT$ (see lectures by Ghiglieri)

 \triangleright Debye mass acts as an 'infrared' $(k \rightarrow 0)$ cutoff

Charge & field correlations

- View the scattering process in a boosted Lorentz frame, where the medium is a rapid 'left mover' : $v_z < 0$, $|v_z| \simeq 1$
- The color current density of the medium: $J^{\mu}_{a}(x)\simeq \delta^{\mu-}
 ho_{a}(x^{+},m{x}_{\perp})$
- The gauge field in gauge $A^+=0$: $A^\mu_a(x)=\delta^{\mu-}A^-_a(x^+,{\pmb x}_\perp)$

$$A_a^-(x^+, \boldsymbol{x}_\perp) = \int \frac{\mathrm{d}^2 \boldsymbol{k}_\perp}{(2\pi)^2} \,\mathrm{e}^{\mathrm{i} \boldsymbol{k}_\perp \cdot \boldsymbol{x}_\perp} \, \frac{\rho_a(x^+, \boldsymbol{k}_\perp)}{\boldsymbol{k}_\perp^2 + m_D^2}$$

- \rhd local in x^+ due to Lorentz–contraction
- ▷ Coulomb propagator in two (transverse) directions
- The 2-point 'correlation' function of independent color sources:

$$\langle \rho_a(x^+, \boldsymbol{x}_\perp) \, \rho_b(y^+, \boldsymbol{y}_\perp) \rangle = g^2 n_0 \, \delta_{ab} \delta(x^+ - y^+) \, \delta^{(2)}(\boldsymbol{x}_\perp - \boldsymbol{y}_\perp)$$

 $\rhd~n_0\sim T^3$: quark and gluon densities weighted with color factors

Charge & field correlations

- View the scattering process in a boosted Lorentz frame, where the medium is a rapid 'left mover' : $v_z < 0$, $|v_z| \simeq 1$
- The color current density of the medium: $J^{\mu}_{a}(x)\simeq \delta^{\mu-}
 ho_{a}(x^{+},m{x}_{\perp})$
- The gauge field in gauge $A^+=0$: $A^\mu_a(x)=\delta^{\mu-}A^-_a(x^+,{m x}_\perp)$

$$A_a^-(x^+, \boldsymbol{x}_\perp) = \int \frac{\mathrm{d}^2 \boldsymbol{k}_\perp}{(2\pi)^2} \,\mathrm{e}^{\mathrm{i} \boldsymbol{k}_\perp \cdot \boldsymbol{x}_\perp} \, \frac{\rho_a(x^+, \boldsymbol{k}_\perp)}{\boldsymbol{k}_\perp^2 + m_D^2}$$

 \rhd local in x^+ due to Lorentz–contraction

- ▷ Coulomb propagator in two (transverse) directions
- The ensuing 2-point correlation function of the gauge fields:

$$\begin{split} \langle A_a^-(x^-, x^+, \boldsymbol{x}_\perp) \, A_b^-(x^-, y^+, \boldsymbol{y}_\perp) \rangle &= g^2 n_0 \, \delta_{ab} \delta(x^+ - y^+) \, \gamma(\boldsymbol{x}_\perp - \boldsymbol{y}_\perp) \\ \gamma(\boldsymbol{k}_\perp) &\equiv \frac{1}{(\boldsymbol{k}_\perp^2 + m_D^2)^2} \; : \quad \text{Coulomb propagator squared} \end{split}$$

 \triangleright 2 gluon exchange with a same medium constituent

$$\langle S_{\boldsymbol{x}\boldsymbol{y}} \rangle = \frac{1}{N_c} \left\langle \operatorname{tr} \left(V(\boldsymbol{x}) V^{\dagger}(\boldsymbol{y}) \right) \right\rangle, \qquad V(\boldsymbol{x}) = \operatorname{T} \operatorname{e}^{\operatorname{i}g \int \mathrm{d}x^+ A_a^-(x^+, \boldsymbol{x}) t^a}$$

• Correlations are local in $x^+ \Longrightarrow$ discretize the respective range:

$$\vartriangleright L = N\epsilon$$
 , $x_n^+ = n\epsilon$, $A_n^-({m x}) \equiv A_a^-(x_n^+,{m x})t^a$

$$V_N(\boldsymbol{x}) = e^{ig\epsilon A_N^-(\boldsymbol{x})} e^{ig\epsilon A_{N-1}^-(\boldsymbol{x})} \cdots e^{ig\epsilon A_0^-(\boldsymbol{x})} = e^{ig\epsilon A_N^-(\boldsymbol{x})} V_{N-1}(\boldsymbol{x})$$

$$S_N(\boldsymbol{x}, \boldsymbol{y}) = rac{1}{N_c} \operatorname{tr} \left(\operatorname{e}^{\operatorname{i} g \epsilon A_N^-(\boldsymbol{x})} S_{N-1}(\boldsymbol{x}, \boldsymbol{y}) \operatorname{e}^{-\operatorname{i} g \epsilon A_N^-(\boldsymbol{y})}
ight)$$

• The Gaussian correlations in such discretized notations:

$$\langle A^{-}_{a,n}(\boldsymbol{x}) A^{-}_{b,m}(\boldsymbol{y}) \rangle = g^2 n_0 \,\delta_{ab} \, \frac{1}{\epsilon} \delta_{nm} \, \gamma(\boldsymbol{x} - \boldsymbol{y})$$

Correlations at different times factorize from each other !

The dipole *S*-matrix (2)

• Recurrence formula for $\langle S_n({m x},{m y})
angle$:

$$\langle S_n(\boldsymbol{x}, \boldsymbol{y}) \rangle = \frac{1}{N_c} \left\langle \operatorname{tr} \left[\operatorname{e}^{\operatorname{i} g \epsilon A_n^-(\boldsymbol{x})} \operatorname{e}^{-\operatorname{i} g \epsilon A_n^-(\boldsymbol{y})} \right] \right\rangle \langle S_{n-1}(\boldsymbol{x}, \boldsymbol{y}) \rangle$$

Expand up to quadratic order in εA_n[−], i.e. to linear order in ε
 ▷ the linear terms from the 2 exponentials average with each other

$$\frac{1}{N_c} \left\langle \operatorname{tr} \left(\operatorname{i} g \epsilon A_{n,a}^{-}(\boldsymbol{x}) t^a \right) \left(-\operatorname{i} g \epsilon A_{n,b}^{-}(\boldsymbol{y}) t^b \right) \right\rangle = C_F(g^2 \epsilon) (g^2 n_0) \gamma(\boldsymbol{x} - \boldsymbol{y})$$

▷ the quadratic terms self-average ('tadpoles')

$$\frac{(\mathbf{i}g\epsilon)^2}{2} \frac{1}{N_c} \left\langle \operatorname{tr} \left(A^-_{n,a}(\boldsymbol{x}) t^a \, A^-_{n,b}(\boldsymbol{x}) t^b \right) \right\rangle = -C_F \, \frac{g^2 \epsilon}{2} \, (g^2 n_0) \gamma(0)$$

• Evolution equation for $\langle S_n({m x},{m y})
angle$ w.r.t x^+ :

$$\frac{\langle S_n(\boldsymbol{x},\boldsymbol{y})\rangle - \langle S_{n-1}(\boldsymbol{x},\boldsymbol{y})\rangle}{\epsilon} = -g^4 C_F n_0 \big[\gamma(0) - \gamma(\boldsymbol{x}-\boldsymbol{y})\big] \langle S_{n-1}(\boldsymbol{x},\boldsymbol{y})\rangle$$

The dipole *S*-matrix (3)

• Continuum limit $\epsilon \to 0 \Longrightarrow$ equation for $\langle S_t(\boldsymbol{x}, \boldsymbol{y}) \rangle$ $(t \equiv x^+ \in [0, L])$

$$\frac{\partial \langle S_t(\boldsymbol{x}, \boldsymbol{y}) \rangle}{\partial t} = -g^4 C_F n_0 \big[\gamma(0) - \gamma(\boldsymbol{x} - \boldsymbol{y}) \big] \langle S_t(\boldsymbol{x}, \boldsymbol{y}) \rangle$$

• The solution $\langle S({m x},{m y})
angle\equiv \langle S_L({m x},{m y})
angle$ is clearly an exponential :

$$\langle S(\boldsymbol{x}, \boldsymbol{y})
angle \, = \, \exp \Big\{ -g^4 C_F n_0 L \big[\gamma(0) - \gamma(\boldsymbol{x} - \boldsymbol{y}) \big] \Big\}$$

 $\triangleright \gamma(0) > \gamma(\boldsymbol{x} - \boldsymbol{y}) \Longrightarrow$ the exponent is positive \Longrightarrow attenuation $\triangleright \langle S(\boldsymbol{x}, \boldsymbol{y}) \rangle$ is a function of the dipole size $\boldsymbol{r} = \boldsymbol{x} - \boldsymbol{y}$ (by homogeneity)

- Exponent: amplitude for a single scattering via 2-gluon exchange
 b the dipole is a color-singlet and must remains so after each scattering
 a single scattering involves the exchange of two gluons
- Independent successive scatterings exponentiate (Glauber series)

• The amplitude for a single scattering:

$$\langle T(\boldsymbol{x}, \boldsymbol{y}) \rangle_0 = g^4 C_F n_0 L \big[\gamma(0) - \gamma(\boldsymbol{x} - \boldsymbol{y}) \big]$$

• The dipole is a color-singlet and must remains so after the scattering ⇒ a single scattering involves the exchange of two gluons

 The medium correlations are Gaussian ⇒ both gluons are exchanged with a same 'color source' from the medium

• The amplitude for a single scattering:

$$\langle T(\boldsymbol{x}, \boldsymbol{y}) \rangle_0 = g^4 C_F n_0 L \big[\gamma(0) - \gamma(\boldsymbol{x} - \boldsymbol{y}) \big]$$

• The dipole is a color-singlet and must remains so after the scattering ⇒ a single scattering involves the exchange of two gluons

• The medium correlations are local in time (x^+) \implies instantaneous exchange between the quark and the antiquark

• The amplitude for a single scattering:

$$\langle T(\boldsymbol{x}, \boldsymbol{y}) \rangle_0 = g^4 C_F n_0 L \big[\gamma(0) - \gamma(\boldsymbol{x} - \boldsymbol{y}) \big]$$

• The dipole is a color-singlet and must remains so after the scattering ⇒ a single scattering involves the exchange of two gluons

• The two gluons can also be exchanged with a same fermion $(q \text{ or } \bar{q})$

• The amplitude for a single scattering:

$$\langle T(\boldsymbol{x}, \boldsymbol{y}) \rangle_0 = g^4 C_F n_0 L \big[\gamma(0) - \gamma(\boldsymbol{x} - \boldsymbol{y}) \big]$$

• The dipole is a color-singlet and must remains so after the scattering ⇒ a single scattering involves the exchange of two gluons

• Effectively, a self-energy tadpole: $\gamma(0)$

The jet quenching parameter (1)

$$\langle S(\boldsymbol{r}) \rangle = \exp\left\{-g^4 C_F n_0 L \int \frac{\mathrm{d}^2 \boldsymbol{k}}{(2\pi)^2} \frac{1}{(\mathbf{k}^2 + m_D^2)^2} \left(1 - \mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}}\right)\right\}$$

- ullet We are interested in relatively small dipole sizes $r\sim 1/p_\perp \ll 1/m_D$
 - $p_\perp \gg m_D$: the momentum accumulated after many scatterings, each one contributing an amount $\sim m_D$
- ullet The integral is dominated by k_\perp in the range $m_D \ll k_\perp \ll 1/r$
 - this range produces a large logarithm $\ln(1/rm_D) \gg 1$
 - it dominates to leading logarithmic accuracy: up to terms of $\mathcal{O}(1)$
- Within this range one can expand the exponential to quadratic order:

$$1 - \mathrm{e}^{\mathrm{i} oldsymbol{k} \cdot oldsymbol{r}} \simeq -\mathrm{i} oldsymbol{k} \cdot oldsymbol{r} + rac{1}{2} oldsymbol{(oldsymbol{k} \cdot oldsymbol{r})}^2 \longrightarrow rac{1}{4} k_{\perp}^2 r^2$$

The jet quenching parameter (2)

• To leading logarithmic accuracy, the dipole S-matrix reads

$$\langle S(m{r})
angle \simeq \exp\left\{-rac{1}{4}\,L\hat{q}(1/r^2)\,m{r}^2
ight\}$$

• The jet quenching parameter \hat{q} :

$$\hat{q}(1/r^2) \equiv g^4 C_F n_0 \int^{1/r^2} \frac{\mathrm{d}^2 \mathbf{k}}{(2\pi)^2} \, \mathbf{k}^2 \, \frac{1}{(\mathbf{k}^2 + m_D^2)^2} \simeq 4\pi \alpha_s^2 C_F n_0 \ln \frac{1}{r^2 m_D^2}$$

- \triangleright a property of the medium (m_D, n_0) measured on the resolution scale r
- The typical value of r is fixed by multiple scattering

$$\frac{\mathrm{d}N}{\mathrm{d}^2\boldsymbol{p}} = \frac{1}{(2\pi)^2} \int_{\boldsymbol{r}} \mathrm{e}^{-\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{r}} \,\mathrm{e}^{-\frac{1}{4}L\hat{q}(1/r^2)\boldsymbol{r}^2}$$

 \rhd dominated by values $r\sim 1/Q_s$ such that the exponent is of $\mathcal{O}(1)$

The saturation momentum

$$Q_s^2 = L\hat{q}(Q_s^2) = 4\pi \alpha_s^2 C_F n_0 L \ln \frac{Q_s^2}{m_D^2} \propto L \ln L$$

- For the dipole : the borderline of multiple scattering
- For the quark: the typical transverse momentum broadening

$$rac{\mathrm{d}N}{\mathrm{d}^2 oldsymbol{p}} \,\simeq\, rac{1}{(2\pi)^2} \int_{oldsymbol{r}} \mathrm{e}^{-\mathrm{i}oldsymbol{p}\cdotoldsymbol{r}} \,\,\mathrm{e}^{-rac{1}{4}Q_s^2\,oldsymbol{r}^2} \,=\, rac{1}{\pi Q_s^2} \,\mathrm{e}^{-oldsymbol{p}^2/Q_s^2}$$

- Gaussian \Longrightarrow a random walk in p_{\perp} : $\langle p_{\perp}^2 \rangle = Q_s^2 = \hat{q}(Q_s^2)L$
- The physical jet quenching parameter : $\hat{q}(Q_s^2) \propto \ln L$ \triangleright weak dependence upon the medium size L
- The physics of p_{\perp} -broadening is mildly non-local in time

 \triangleright it 'knows' about the overall size of the medium

The tail of the distribution at high p_{\perp}

- So far, we implicitly assumed that p⊥ is not much larger than Qs
 ▷ the typical situation: p⊥ gets accumulated via rescattering in the medium
- When $p_{\perp} \gg Q_s$, the Fourier transform is cut off by the complex exponential $e^{ip \cdot r}$ already for small dipole sizes $r_{\perp} \ll 1/Q_s$
- The S-matrix can be evaluated in the single scattering approximation:

$$\langle S(\boldsymbol{r}) \rangle \simeq 1 - \frac{1}{4} L \hat{q}(1/r^2) \, \boldsymbol{r}^2$$

$$\frac{\mathrm{d}N}{\mathrm{d}^2 \boldsymbol{p}} \simeq \frac{\alpha_s^2 C_F}{4\pi} n_0 L \int_{\boldsymbol{r}} \mathrm{e}^{-\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{r}} \left(-r^2\right) \ln \frac{1}{r^2 m_D^2} = \frac{4\alpha_s^2 C_F n_0 L}{\boldsymbol{p}^4}$$

The tail of the distribution at high p_{\perp}

- So far, we implicitly assumed that p⊥ is not much larger than Qs
 ▷ the typical situation: p⊥ gets accumulated via rescattering in the medium
- When $p_{\perp} \gg Q_s$, the Fourier transform is cut off by the complex exponential $e^{ip \cdot r}$ already for small dipole sizes $r_{\perp} \ll 1/Q_s$
- The S-matrix can be evaluated in the single scattering approximation:

$$\langle S(\boldsymbol{r}) \rangle \simeq 1 - \frac{1}{4} L \hat{q}(1/r^2) \, \boldsymbol{r}^2$$

$$\frac{\mathrm{d}N}{\mathrm{d}^2\boldsymbol{p}} \simeq \frac{\alpha_s^2 C_F}{4\pi} n_0 L \nabla_{\boldsymbol{p}}^2 \int_{\boldsymbol{r}} \mathrm{e}^{-\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{r}} \, \ln \frac{1}{r^2 m_D^2} = \frac{4\alpha_s^2 C_F n_0 L}{\boldsymbol{p}^4}$$

 \triangleright N.B. the logarithmic dependence of $\hat{q}(1/r^2)$ is now essential

• The high- p_{\perp} tail is generated via rare but very hard collisions