Jet evolution in a dense QCD medium: III

Edmond Iancu IPhT Saclay & CNRS

A typical gluon cascade

- The leading particle emits mostly soft gluons ($x \ll 1$)
- The subsequent branchings of these soft gluons are quasi-democratic
- Very efficient in transporting the energy at small x , or large angles

A few words on the formalism

 \bullet 1 \rightarrow 2 gluon branching: amplitude \times complex conjugate amplitude

• 'Medium' = randomly distributed scattering centers (Gaussian)

- Coulomb scattering with Debye screening
- multiple scattering in eikonal approximation (one Wilson line per gluon)
- Cross–section: 3–p and 4–p functions of the Wilson lines
	- similar to the 2–p function (the 'dipole'), but more complicated

Interference effects

- The theory of multiple emissions can be quite complicated
- Successive quantum emissions are generally not independent
	- one sums the amplitudes, then one takes the modulus squared

the 'cross–terms' represent interference effects

During gluon formation, the sources must be coherent with each other

- their overall color charge should not change until the next emission
- obviously satisfied in the vacuum, but not also in the medium (color exchanges with the medium constituents)

Angular ordering in the vacuum

A subsequent emission at large angles sees the overall color charge

• Destructive interference effects leading to angular ordering

An essential feature of jet fragmentation in the vacuum.

A 'color antenna' in the vacuum

- A $q\bar{q}$ pair in a color singlet state (say, as produced by the decay of a photon) which propagates at a fixed angle $\theta_{q\bar{q}}$
- During formation, the gluon must overlap with both sources

 \Rightarrow $\theta_q \ge \theta_{q\bar{q}}$: large angle emission (out of cone) Large–angle gluons see only the total color charge (here, zero) \Rightarrow the out–of–cone radiation is washed out by interference
Jet Summer School @ UC Davis Let evolution in a dense OCD medium: III E. Jancu. June 20. [Jet evolution in a dense QCD medium: III](#page-0-0) E. Iancu, June 20, 2014 $6 / 32$

Color antenna in the medium

- The two quarks lose their color coherence via rescattering
- The instantaneous color state of each quark: the respective Wilson line
- \bullet Their color correlation is measured by the dipole S -matrix

Color coherence is lost for $\tau \gtrsim \tau_{\rm coh} \sim 1/(\hat{q}\theta^2)^{1/3}$

Color antenna in the medium

- The two quarks lose their color coherence via rescattering
- The instantaneous color state of each quark: the respective Wilson line
- \bullet Their color correlation is measured by the dipole S –matrix

If the antenna is generated via gluon splitting: $\theta = \theta_f(\omega) \sim (\hat{q}/\omega^3)^{1/4}$

$$
\tau_{\rm coh} \sim \frac{1}{(\hat{q}\theta_f^2)^{1/3}} \; \sim \; \sqrt{\frac{2\omega}{\hat{q}}} \; = \; \tau_f(\omega)
$$

Multiple emissions : medium

• In medium, color coherence is rapidly lost via rescattering Mehtar-Tani, Salgado, Tywoniuk (arXiv: 1009.2965; 1102.4317); Casalderrey-Solana, E. I. (arXiv: 1106.3864)

- The interference effects are suppressed by a factor $\tau_f/L \ll 1$ \triangleright the respective phase–space is proportional to τ_f , instead of L Blaizot, Dominguez, E.I., Mehtar-Tani (arXiv: 1209.4585)
- Successive emissions of soft gluons ($\omega \ll \omega_c$) can be treated as independent (no interference, no angular ordering)

A classical branching process

• Medium–induced jet evolution \approx a classical branching process

- the $g \rightarrow gg$ splitting vertex (the 'blob') : the BDMPSZ spectrum
- the propagator (the 'line') : transverse momentum broadening
- Markovian process in $D = 3 + 1$: ω , \mathbf{k}_{\perp} , time t (with $t \leq L$) Blaizot, Dominguez, E.I., Mehtar-Tani (arXiv:1311.5823)
- Well suited for Monte Carlo simulations
- The inclusive one–gluon distribution :

$$
D(\omega, \mathbf{k}, t) \equiv \omega \frac{\mathrm{d}N}{\mathrm{d}\omega \mathrm{d}^2 \mathbf{k}}
$$

• Here, I will restrict myself to the $1+1$ process involving (ω, t)

The rate equation (1)

• Evolution equation for the gluon spectrum (energy per unit x) :

$$
D(x,t) \equiv x \frac{dN}{dx} \quad \text{where} \quad x = \frac{\omega}{E} \quad \text{(energy fraction)}
$$

 $\bullet t \rightarrow t + dt$: one additional branching with splitting fraction z

• Described by a rate equation : $\partial D/\partial t =$ Gain - Loss

- \bullet 'Gain' : a gluon with fraction x is produced via the decay of a parent gluon with fraction $x' = x/z$
- 'Loss': the gluon x decays into the gluon pair $(zx,(1-z)x)$, with any z

The BDMPSZ splitting rate

• Probability dP for a parent particle $\omega_0 = xE$ to split in a time dt

$$
dP \simeq \alpha_s \frac{d\omega}{\omega} \frac{dt}{\tau_f(\omega)}
$$

$$
\simeq \alpha_s \frac{dz}{z} \sqrt{\frac{\hat{q}}{zxE}} dt
$$

$$
\mathcal{K}(z,x) \, \equiv \, \frac{\mathrm{d}P}{\mathrm{d}z\mathrm{d}t} \, \simeq \, \alpha_s \, \frac{1}{z} \, \sqrt{\frac{\hat{q}}{zxE}}
$$

\triangleright parametric estimate correct when $z \ll 1$

• The general expression is symmetric under $z \to 1-z$:

$$
\mathcal{K}(z,x) = \alpha_s \frac{P_{gg}(z)}{2\pi} \sqrt{\frac{\hat{q}}{z(1-z)xE}}, \qquad P_{gg}(z) \equiv N_c \frac{[1-z(1-z)]^2}{z(1-z)}
$$

The rate equation (2)

$$
\frac{\partial D(x,\tau)}{\partial \tau} = \int dz \left[2\mathcal{K}\left(z, \frac{x}{z}\right) D\left(\frac{x}{z}, t\right) - \mathcal{K}(z, x) D(x, t) \right]
$$

$$
\mathcal{K}(z, x) \equiv \frac{dP}{dz d\tau} = \frac{1}{2\sqrt{x}} \frac{1}{[z(1-z)]^{3/2}}, \qquad \tau \equiv \frac{\alpha_s N_c}{\pi} \sqrt{\frac{\hat{q}}{E}} t
$$

Previously conjectured and used for phenomenological studies : Baier, Mueller, Schiff, Son '01; AMY, '03; Jeon, Moore '05; MARTINI

Carefully derived and studied (including exact solutions) in J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

First iteration

- Initial condition: $D(x, \tau = 0) = \delta(x 1)$ (the leading particle)
- At small times: one iteration \Rightarrow a single branching :

$$
D^{(1)}(x,\tau) = 2x\mathcal{K}(x,1)\tau = \frac{\tau}{\sqrt{x}(1-x)^{3/2}}
$$

This is the BDMPSZ spectrum $\colon D^{(1)}(x\ll 1,\tau)\simeq \tau/\sqrt{x}$

Jet Summer School @ UC Davis [Jet evolution in a dense QCD medium: III](#page-0-0) E. Iancu, June 20, 2014 13 / 32

The spectrum with multiple branchings

• The spectrum at later times : exact solution to the rate equation

$$
D(x,\tau) = \frac{\tau}{\sqrt{x(1-x)^{3/2}}} e^{-\pi \frac{\tau^2}{1-x}}
$$

The leading particle

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}
$$

- Correct initial condition: $D(x, \tau = 0) = \delta(x 1)$
- Small times $\pi \tau^2 \ll 1$: a pronounced peak near $x = 1$
	- the width of this peak : $1 x \sim \pi \tau^2 \sim \alpha_s^2 \frac{\omega_c}{E}$
	- ... is associated with the emission of very soft gluons :

$$
\omega_{\rm rad} = (1-x)E \lesssim \alpha_s^2 \omega_c
$$

• This peak (the 'leading particle') disappears when $\pi \tau^2 \sim 1$

The leading particle

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}
$$

• Correct initial condition: $D(x, \tau = 0) = \delta(x - 1)$

- Small times $\pi \tau^2 \ll 1$: a pronounced peak near $x = 1$
	- the width of this peak : $1 x \sim \pi \tau^2 \sim \alpha_s^2 \frac{\omega_c}{E}$
	- ... is associated with the emission of very soft gluons :

$$
\omega_{\rm rad} = (1-x)E \lesssim \alpha_s^2 \omega_c
$$

• Vice versa, a leading particle with sufficiently high energy $(E\gg\alpha_s^2\omega_c)$, survives in the final state

Quenching of hadron spectra : R_{A+A}

$$
\frac{\mathrm{d}\sigma^{\mathrm{med}}(E)}{\mathrm{d}E} = \int \mathrm{d}\epsilon \, \mathcal{P}(\epsilon) \, \frac{\mathrm{d}\sigma^{\mathrm{vac}}(E+\epsilon)}{\mathrm{d}E}
$$

 \bullet $\mathcal{P}(\epsilon)$ with $\epsilon \ll E$: probability density for a 'leading particle' with initial energy $E + \epsilon$ to lose a small amount ϵ

$$
\mathcal{P}(\epsilon) = \frac{dN}{d\omega}\Big|_{\omega=E} = \frac{1}{E} D(x, \tau_L)\Big|_{x=\frac{E}{E+\epsilon}}
$$

Quenching of hadron spectra : R_{A+A}

$$
\frac{\mathrm{d}\sigma^{\mathrm{med}}(E)}{\mathrm{d}E} = \int \mathrm{d}\epsilon \, \mathcal{P}(\epsilon) \, \frac{\mathrm{d}\sigma^{\mathrm{vac}}(E+\epsilon)}{\mathrm{d}E}
$$

 \bullet $\mathcal{P}(\epsilon)$ with $\epsilon \ll E$: probability density for a 'leading particle' with initial energy $E + \epsilon$ to lose a small amount ϵ

$$
\mathcal{P}(\epsilon) \, = \, \bar{\alpha} \, \sqrt{\frac{2 \omega_c}{\epsilon^3}} \, \, \exp \left\{ -2 \pi \bar{\alpha}^2 \frac{\omega_c}{\epsilon} \right\}
$$

 \triangleright integral dominated by relatively soft values $\epsilon \sim \pi \bar{\alpha}^2 \omega_c \ll \omega_c$

- Even R_{A+A} is controlled by the typical emissions of primary gluons, which are soft, and not by the average energy loss $\Delta E \sim \bar{\alpha}\omega_c$
- Fits to the data $\Rightarrow \omega_c \simeq 50$ GeV, $L \simeq 5$ fm, $\hat{q} \sim 1 \div 2$ GeV²/fm (JET Collaboration, http://arxiv.org/pdf/1312.5003.pdf)

 \triangleright the typical energy loss of the primary gluons: $\epsilon \sim \bar{\alpha}^2 \omega_c \sim 5$ GeV

The scaling spectrum

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}
$$

• Soft region of the spectrum $x \ll 1$ (and for any time τ) :

$$
D(x \ll 1, \tau) \simeq \frac{\tau}{\sqrt{x}} e^{-\pi \tau^2}
$$
 ('scaling spectrum')

- formally : 'BDMPSZ \times survival probability for the leading particle'
- \bullet This result at small x seems consistent with the following picture:

• direct emissions by the leading particle ('all gluons are primary gluons')

The scaling spectrum

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}
$$

• Soft region of the spectrum $x \ll 1$ (and for any time τ) :

$$
D(x \ll 1, \tau) \simeq \frac{\tau}{\sqrt{x}} e^{-\pi \tau^2}
$$
 ('scaling spectrum')

• formally : 'BDMPSZ \times survival probability for the leading particle'

• ... but in reality one was expecting the following picture !

The scaling spectrum

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}
$$

• Soft region of the spectrum $x \ll 1$ (and for any time τ):

$$
D(x \ll 1, \tau) \simeq \frac{\tau}{\sqrt{x}} e^{-\pi \tau^2}
$$
 ('scaling spectrum')

• formally : 'BDMPSZ \times survival probability for the leading particle'

• ... but in reality one was expecting the following picture !

The second picture is nevertheless the right one !

The fixed point

Multiple branchings are very efficient at small $x \lesssim \tau^2$, yet they have no consequence on the shape of the spectrum

- The scaling spectrum is a fixed point of the rate equation:
	- precise cancellation between 'gain' and 'loss' terms at any $x \ll 1$
- Via successive branchings, the energy flows from large x to small x , without accumulating at any intermediate value of x

The fixed point

Multiple branchings are very efficient at small $x \lesssim \tau^2$, yet they have no consequence on the shape of the spectrum

• the energy fraction which remains in the spectrum at time τ :

$$
\int_0^1 dx D(x, \tau) = e^{-\pi \tau^2}
$$

- The scaling spectrum is a fixed point of the rate equation:
	- precise cancellation between 'gain' and 'loss' terms at any $x \ll 1$
- Via successive branchings, the energy flows from large x to small x , without accumulating at any intermediate value of x
- The energy flows out from the spectrum ... exponentially fast !

Wave turbulence

• The rate for energy transfer from one parton generation to the next one is independent of the generation (i.e. of x)

- The definition of wave turbulence (Kolmogorov, '41; Zakharov, '92 ...)
	- the prototype: Richardson cascade for breaking-up vortices

Compare to DGLAP cascade (jet in the vacuum)

- in–medium cascade
- No flow: the energy remains in the spectrum: $\int_0^1 \mathrm{d} x\, D(x,\tau) = 1$
- The asymmetric splittings amplify the number of gluons at small x
- \bullet Yet, the energy remains in the few partons with larger values of x
- That is, the energy remains at small angles

The energy flow

- Via successive branchings, the energy flows down to $x = 0$
	- formally, it accumulates into a 'condensate' at $x = 0$
	- physically, it goes below $x_{\text{th}} = T/E \ll 1$, meaning it thermalizes
- The energy fraction carried away by this flow :

$$
\mathcal{E}_{\text{flow}}(\tau) \equiv 1 - \int_0^1 \mathrm{d}x \, D(x, \tau) = 1 - e^{-\pi \tau^2}
$$

- This energy emerges at very (arbitrarily) large angles !
- Universality : the energy loss via flow is
	- independent of the jet angular opening
	- independent of the details of the thermalization mechanism
	- a property of the gluon cascade, not of the in–medium dissipation

Applications to phenomenology

- In principle, the whole energy of the jet can be lost via flow
	- via arbitrarily soft particles which propagate at arbitrarily large angles

$$
\mathcal{E}_{\text{flow}}(\tau) \equiv 1 - \int_0^1 \mathrm{d}x \, D(x, \tau) = 1 - e^{-\pi \tau^2}
$$

• In practice, this depends upon the maximal value of τ , that is

• upon the jet energy E & upon the medium properties \hat{q} and L

$$
\tau = \alpha_s \sqrt{\frac{\hat{q}}{E}} \ L \ \sim \ 0.3 \quad \text{for} \quad E = 100 \text{ GeV}
$$

 $1 - e^{-\pi \tau^2} \sim 0.25 \Rightarrow$ about 25% of the energy is lost at large angles

• After restoring the physical units :

 $E_{\text{flow}} \simeq \pi \alpha_s^2 \hat{q} L^2$ $\qquad (\sim 20 \text{ GeV for } L = 5 \text{ fm})$

 \bullet ... which is independent of the original energy E !

Energy loss at large angles

• How much of the jet energy emerges at angles $\theta > \theta_0$?

$$
\theta(\omega) \simeq \frac{Q_s}{\omega} = \frac{Q_s}{xE} \implies \theta(x) > \theta_0 \iff x < x_0 \equiv \frac{Q_s}{E\theta_0}
$$

• The energy fraction at $x < x_0$ has 2 components: 'spectrum' & 'flow'

$$
\mathcal{E}(x \le x_0, \tau) = \int_0^{x_0} dx D(x, \tau) + \mathcal{E}_{flow}(\tau)
$$

- the 'spectrum' piece is dominated by the relatively hard gluons with $x \sim x_0$
- the 'flow' piece is independent of x_0 and dominated by very soft gluons with $x \sim x_{\text{th}} \ll x_0$
- \bullet 'flow'dominates over 'spectrum' for sufficiently large angle θ_0
- Di–jet asymmetry (energy loss at large angles) is controlled by flow

Energy loss at large angles

• How much of the jet energy emerges at angles $\theta > \theta_0$?

$$
\theta(\omega) \simeq \frac{Q_s}{\omega} = \frac{Q_s}{xE} \implies \theta(x) > \theta_0 \iff x < x_0 \equiv \frac{Q_s}{E\theta_0}
$$

• The energy fraction at $x < x_0$ has 2 components: 'spectrum' & 'flow'

$$
\mathcal{E}(x \le x_0, \tau) = 2\tau \sqrt{x_0} e^{-\pi \tau^2} + (1 - e^{-\pi \tau^2}) \simeq 2\tau \sqrt{x_0} + \pi \tau^2
$$

• we assume $x_{\text{th}} < x_0 \ll 1$ and $\pi \tau^2 \ll 1$

$$
\bullet \ \ E=100 \ \text{GeV}, \ \ Q_s=2.5 \ \text{GeV}, \ T=1 \ \text{GeV}, \ \theta_0=0.5
$$

 $\implies x_{\text{th}} = 0.01, \ x_0 = 0.05, \ \pi \tau^2 \simeq 0.3$

'flow' dominates when $x_0 \lesssim (\pi^2/4)\tau^2 \simeq 0.2$, i.e. when

$$
\theta_0 \gtrsim \frac{2}{\pi^2} \frac{Q_s}{\bar{\alpha}_s^2 \omega_c} \sim \frac{2Q_s}{\omega_c} \simeq 0.2
$$

 \bullet 'flow' is built with quanta having $x \sim x_{th}$, or $ω \sim T \sim 1$ GeV

Di-jet asymmetry at the LHC (CMS) 0 $\tilde{ }$

Qualitative and even quantitative agreement with the LHC data

Such an agreement would be impossible without the 'turbulent flow'

Radiative momentum broadening

- So far: the effects of transverse momentum broadening on the medium–induced radiation
- The opposite effect exists as well: medium–induced gluon emissions contribute to momentum broadening, via their recoil

- A large radiative correction to \hat{q} (Liou, Mueller, Wu, 13)
	- formally suppressed by α_s but enhanced by large logarithms coming from integrating over the phase–space
- To evaluate this, we also need the distribution of the radiation in k_{\perp}

The double logarithmic correction

 \bullet Dominant effect from relatively hard emissions (large k_{\perp}), as triggered by a single scattering (Gunion–Bertsch spectrum)

 $\omega \frac{\mathrm{d}N}{\mathrm{d}n}$ $\frac{{\rm d}N}{{\rm d}\omega\,{\rm d}^2\bm{k}}\simeq\frac{\alpha_sN_c}{\pi^2}$ π^2 $\hat q L$ k_\perp^4 $(\mathsf{N}.\mathsf{B.}{}:{}$ linear in $\hat{q})$

• The radiative contribution to the p_{\perp} –broadening of the quark:

$$
\langle p_{\perp}^2 \rangle_{\text{rad}} = \int_{\omega,\boldsymbol{k}} \boldsymbol{k}^2 \frac{\mathrm{d}N}{\mathrm{d}\omega \, \mathrm{d}^2 \boldsymbol{k}} \sim L \, \alpha_s \hat{q} \int \frac{\mathrm{d}\omega}{\omega} \int \frac{\mathrm{d}^2 k_{\perp}}{k_{\perp}^2} \equiv L \, \Delta \hat{q}
$$

Jet Summer School @ UC Davis [Jet evolution in a dense QCD medium: III](#page-0-0) E. Iancu, June 20, 2014 26 / 32

A renormalization group equation for \hat{q}

• The limits of the phase–space are simpler in terms of the fluctuation **lifetime** $\tau = 2\omega/k_{\perp}^2$ (below, $\lambda \equiv 1/T$: thermal wavelength)

$$
\frac{\Delta \hat{q}}{\hat{q}} \sim \alpha_s \int_{\lambda}^{L} \frac{\mathrm{d}\tau}{\tau} \int_{\hat{q}\tau}^{\hat{q}L} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} = \frac{\alpha_s N_c}{2\pi} \ln^2(LT) \simeq 1
$$

- a relatively large correction \implies needs for resummation
- To double–logarithmic accuracy the higher–loop corrections are strongly ordered in lifetimes and transverse momenta

$$
\hat{q}(L) = \hat{q}^{(0)} + \bar{\alpha} \int_{\lambda}^{L} \frac{d\tau}{\tau} \int_{\hat{q}\tau}^{\hat{q}L} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \hat{q}_{\tau}(k_{\perp}^{2})
$$

(E.I., arXiv:1403.1996; Blaizot and Mehtar-Tani, arXiv:1403.2323)

(For experts:) Not the standard DLA eq. (different integration limits)

From fixed to running coupling

• The solution for a fixed QCD coupling α_s (Liou, Mueller, Wu, 13)

$$
\hat{q}(L) = \hat{q}^{(0)} \frac{1}{\sqrt{\bar{\alpha}} \ln(L/\lambda)} I_1\left(2\sqrt{\bar{\alpha}} \ln\frac{L}{\lambda}\right) \propto L^{2\sqrt{\bar{\alpha}}}
$$

large anomalous dimension $\gamma_s = 2\sqrt{\bar{\alpha}} \sim 1$ (with $\bar{\alpha} = \alpha_s N_c/\pi$)

• However, this is qualitatively modified by the running of the coupling (E.I., D.N. Triantafyllopoulos, to appear)

$$
\hat{q}(L) = \hat{q}^{(0)} + \int_{\lambda}^{L} \frac{\mathrm{d}\tau}{\tau} \int_{\hat{q}\tau}^{\hat{q}L} \frac{\mathrm{d}k_{\perp}^{2}}{k_{\perp}^{2}} \,\bar{\alpha}(k_{\perp}^{2}) \,\hat{q}_{\tau}(k_{\perp}^{2})
$$

$$
\implies \ln \hat{q}(L) \, \simeq \, 4\sqrt{b_0 \ln \frac{L}{\lambda}} \qquad \text{(slower than any exponential)}
$$

• The pre–asymptotic corrections too are under control

From fixed to running coupling

Fixed coupling $\bar{\alpha} = 0.35$

Running coupling (1 loop)

- $\bullet Y \equiv \ln(L/\lambda)$: evolution 'time'; at RHIC and LHC, $Y = 2 \div 4$.
- Similar predictions with FC and RC for the physical value $Y = 3$: enhancement by a factor of 3

Jet Summer School @ UC Davis [Jet evolution in a dense QCD medium: III](#page-0-0) E. Iancu, June 20, 2014 29 / 32

Conclusions

- Remarkable progress in understanding medium–induced jet evolution
	- a new kind of branching process in pQCD
	- hard emissions at small angles (energy loss by leading particle, R_{AA})
	- soft, quasi-democratic, branchings leading to turbulent flow (di-jet asymmetry)
	- probabilistic picture, well suited for Monte Carlo implementations
	- fully 3+1–dim simulations possible \implies jet shapes
	- large radiative corrections to \hat{q} which are under control in pQCD
- Many open problems:
	- proper interplay with 'vacuum' radiation
	- fully $(3+1)$ -dim simulations, extensive phenomenology ...

THANK YOU !

Energy transport at large angles

• Just a little fraction of the 'missing energy' is recovered when gradually increasing the jet opening : most of the energy is lost at large angles

ATLAS, arXiv:1208.1967

• What is the mechanism for energy transport at large angles?

Energy flow at large angles

• The energy inside the jet is only weakly increasing with the jet angular opening R , within a wide range of values for R