Jet evolution in a dense QCD medium: III

Edmond Iancu IPhT Saclay & CNRS

A typical gluon cascade

- The leading particle emits mostly soft gluons ($x \ll 1$)
- The subsequent branchings of these soft gluons are quasi-democratic
- Very efficient in transporting the energy at small x, or large angles

A few words on the formalism

• $1 \rightarrow 2$ gluon branching: amplitude \times complex conjugate amplitude

- 'Medium' = randomly distributed scattering centers (Gaussian)
 - Coulomb scattering with Debye screening
 - multiple scattering in eikonal approximation (one Wilson line per gluon)
- Cross-section: 3-p and 4-p functions of the Wilson lines
 - similar to the 2-p function (the 'dipole'), but more complicated

Interference effects

- The theory of multiple emissions can be quite complicated
- Successive quantum emissions are generally not independent
 - one sums the amplitudes, then one takes the modulus squared

• the 'cross-terms' represent interference effects

• During gluon formation, the sources must be coherent with each other

- their overall color charge should not change until the next emission
- obviously satisfied in the vacuum, but not also in the medium (color exchanges with the medium constituents)

Angular ordering in the vacuum

• A subsequent emission at large angles sees the overall color charge

• Destructive interference effects leading to angular ordering

• An essential feature of jet fragmentation in the vacuum.

A 'color antenna' in the vacuum

- A $q\bar{q}$ pair in a color singlet state (say, as produced by the decay of a photon) which propagates at a fixed angle $\theta_{q\bar{q}}$
- During formation, the gluon must overlap with both sources

 $\implies \theta_q \gtrsim \theta_{q\bar{q}} : \text{ large angle emission (out of cone)}$ • Large-angle gluons see only the total color charge (here, zero) $\implies \text{the out-of-cone radiation is washed out by interference}$ Jet Summer School @ UC Davis ______ Jet evolution in a dense QCD medium: III___E. Jancu, June 20, 2014

6 / 32

Color antenna in the medium

- The two quarks lose their color coherence via rescattering
- The instantaneous color state of each quark: the respective Wilson line
- Their color correlation is measured by the dipole S-matrix

• Color coherence is lost for $\tau\gtrsim au_{
m coh}\sim 1/(\hat{q}\theta^2)^{1/3}$

Color antenna in the medium

- The two quarks lose their color coherence via rescattering
- The instantaneous color state of each quark: the respective Wilson line
- Their color correlation is measured by the dipole S-matrix

• If the antenna is generated via gluon splitting: $\theta = \theta_f(\omega) \sim (\hat{q}/\omega^3)^{1/4}$

$$au_{
m coh} \sim rac{1}{(\hat{q} heta_f^2)^{1/3}} \sim \sqrt{rac{2\omega}{\hat{q}}} = au_f(\omega)$$

Multiple emissions : medium

• In medium, color coherence is rapidly lost via rescattering Mehtar-Tani, Salgado, Tywoniuk (arXiv: 1009.2965; 1102.4317); Casalderrey-Solana, E. I. (arXiv: 1106.3864)

- The interference effects are suppressed by a factor τ_f/L ≪ 1
 ▷ the respective phase–space is proportional to τ_f, instead of L
 Blaizot, Dominguez, E.I., Mehtar-Tani (arXiv: 1209.4585)
- Successive emissions of soft gluons ($\omega \ll \omega_c$) can be treated as independent (no interference, no angular ordering)

A classical branching process

• Medium-induced jet evolution \approx a classical branching process

- the $g \rightarrow gg$ splitting vertex (the 'blob') : the BDMPSZ spectrum
- the propagator (the 'line') : transverse momentum broadening
- Markovian process in D = 3 + 1: ω , k_{\perp} , time t (with $t \leq L$) Blaizot, Dominguez, E.I., Mehtar-Tani (arXiv:1311.5823)
- Well suited for Monte Carlo simulations
- The inclusive one-gluon distribution :

$$D(\omega, \boldsymbol{k}, t) \equiv \omega \frac{\mathrm{d}N}{\mathrm{d}\omega \mathrm{d}^2 \boldsymbol{k}}$$

• Here, I will restrict myself to the 1+1 process involving (ω, t)

The rate equation (1)

• Evolution equation for the gluon spectrum (energy per unit x) :

$$D(x,t) \equiv x \frac{\mathrm{d}N}{\mathrm{d}x}$$
 where $x = \frac{\omega}{E}$ (energy fraction)

• $t \rightarrow t + dt$: one additional branching with splitting fraction z

• Described by a rate equation : $\partial D/\partial t = \text{Gain} - \text{Loss}$

- 'Gain' : a gluon with fraction x is produced via the decay of a parent gluon with fraction $x^\prime=x/z$
- 'Loss': the gluon x decays into the gluon pair (zx, (1-z)x), with any z

The BDMPSZ splitting rate

• Probability dP for a parent particle $\omega_0 = xE$ to split in a time dt

$$dP \simeq \alpha_s \frac{d\omega}{\omega} \frac{dt}{\tau_f(\omega)}$$
$$\simeq \alpha_s \frac{dz}{z} \sqrt{\frac{\hat{q}}{zxE}} dt$$

$$\mathcal{K}(z,x) \equiv rac{\mathrm{d}P}{\mathrm{d}z\mathrm{d}t} \simeq lpha_s rac{1}{z} \sqrt{rac{\hat{q}}{zxE}}$$

\rhd parametric estimate correct when $z\ll 1$

• The general expression is symmetric under $z \rightarrow 1-z$:

$$\mathcal{K}(z,x) = lpha_s \, rac{P_{gg}(z)}{2\pi} \, \sqrt{rac{\hat{q}}{z(1-z)xE}} \,, \qquad P_{gg}(z) \equiv N_c \, rac{[1-z(1-z)]^2}{z(1-z)}$$

The rate equation (2)

$$\frac{\partial D(x,\tau)}{\partial \tau} = \int dz \left[2\mathcal{K}\left(z,\frac{x}{z}\right) D\left(\frac{x}{z},t\right) - \mathcal{K}(z,x) D(x,t) \right]$$
$$\mathcal{K}(z,x) \equiv \frac{dP}{dzd\tau} = \frac{1}{2\sqrt{x}} \frac{1}{[z(1-z)]^{3/2}}, \qquad \tau \equiv \frac{\alpha_s N_c}{\pi} \sqrt{\frac{\hat{q}}{E}} t$$

• Previously conjectured and used for phenomenological studies : Baier, Mueller, Schiff, Son '01; AMY, '03; Jeon, Moore '05; MARTINI

• Carefully derived and studied (including exact solutions) in J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

First iteration

- Initial condition: $D(x, \tau = 0) = \delta(x 1)$ (the leading particle)
- At small times: one iteration \Rightarrow a single branching :

$$D^{(1)}(x,\tau) = 2x\mathcal{K}(x,1)\tau = \frac{\tau}{\sqrt{x(1-x)^{3/2}}}$$

• This is the BDMPSZ spectrum : $D^{(1)}(x \ll 1, au) \simeq au/\sqrt{x}$

Jet Summer School @ UC Davis Jet evolution in a dense QCD medium: III E. lancu, June 20, 2014 13 / 32

The spectrum with multiple branchings

• The spectrum at later times : exact solution to the rate equation

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}$$

The leading particle

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}$$

- Correct initial condition: $D(x, \tau = 0) = \delta(x 1)$
- Small times $\pi\tau^2\ll 1$: a pronounced peak near x=1
 - ullet the width of this peak : $1-x\sim \pi \tau^2\sim \, \alpha_s^2 \, \frac{\omega_c}{E}$
 - $\bullet \ \ldots$ is associated with the emission of very soft gluons :

$$\omega_{\rm rad} = (1-x)E \lesssim \alpha_s^2 \, \omega_c$$

• This peak (the 'leading particle') disappears when $\pi au^2 \sim 1$

The leading particle

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}$$

- Correct initial condition: $D(x, \tau = 0) = \delta(x 1)$
- \bullet Small times $\pi\tau^2\ll 1$: a pronounced peak near x=1
 - ullet the width of this peak : $1-x\sim\pi\tau^2\sim\,\alpha_s^2\,\frac{\omega_c}{E}$
 - $\bullet \ \ldots$ is associated with the emission of very soft gluons :

$$\omega_{\rm rad} = (1-x)E \lesssim \alpha_s^2 \, \omega_c$$

• Vice versa, a leading particle with sufficiently high energy $(E \gg \alpha_s^2 \omega_c)$, survives in the final state

Quenching of hadron spectra : R_{A+A}

$$\frac{\mathrm{d}\sigma^{\mathrm{med}}(E)}{\mathrm{d}E} = \int \mathrm{d}\epsilon \,\mathcal{P}(\epsilon) \,\frac{\mathrm{d}\sigma^{\mathrm{vac}}(E+\epsilon)}{\mathrm{d}E}$$

• $\mathcal{P}(\epsilon)$ with $\epsilon \ll E$: probability density for a 'leading particle' with initial energy $E + \epsilon$ to lose a small amount ϵ

$$\mathcal{P}(\epsilon) = \left. \frac{\mathrm{d}N}{\mathrm{d}\omega} \right|_{\omega=E} = \left. \frac{1}{E} D(x, \tau_L) \right|_{x=\frac{E}{E+\epsilon}}$$

Quenching of hadron spectra : R_{A+A}

$$\frac{\mathrm{d}\sigma^{\mathrm{med}}(E)}{\mathrm{d}E} = \int \mathrm{d}\epsilon \,\mathcal{P}(\epsilon) \,\frac{\mathrm{d}\sigma^{\mathrm{vac}}(E+\epsilon)}{\mathrm{d}E}$$

• $\mathcal{P}(\epsilon)$ with $\epsilon \ll E$: probability density for a 'leading particle' with initial energy $E + \epsilon$ to lose a small amount ϵ

$$\mathcal{P}(\epsilon) = \bar{\alpha} \sqrt{\frac{2\omega_c}{\epsilon^3}} \exp\left\{-2\pi\bar{\alpha}^2 \frac{\omega_c}{\epsilon}\right\}$$

 \rhd integral dominated by relatively soft values $\epsilon \sim \pi \bar{\alpha}^2 \omega_c \ll \omega_c$

- Even R_{A+A} is controlled by the typical emissions of primary gluons, which are soft, and not by the average energy loss $\Delta E \sim \bar{\alpha} \omega_c$
- Fits to the data $\Rightarrow \omega_c \simeq 50$ GeV, $L \simeq 5$ fm, $\hat{q} \sim 1 \div 2$ GeV²/fm (JET Collaboration, http://arxiv.org/pdf/1312.5003.pdf)

 \rhd the typical energy loss of the primary gluons: $\epsilon\sim \bar{\alpha}^2\omega_c\sim 5~{\rm GeV}$

The scaling spectrum

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}$$

• Soft region of the spectrum $x \ll 1$ (and for any time τ) :

$$D(x \ll 1, au) \simeq rac{ au}{\sqrt{x}} \, \mathrm{e}^{-\pi au^2}$$
 ('scaling spectrum')

- $\bullet\,$ formally : 'BDMPSZ $\times\,$ survival probability for the leading particle'
- This result at small x seems consistent with the following picture:

• direct emissions by the leading particle ('all gluons are primary gluons')

The scaling spectrum

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}$$

• Soft region of the spectrum $x \ll 1$ (and for any time τ) :

$$D(x \ll 1, au) \simeq rac{ au}{\sqrt{x}} \mathrm{e}^{-\pi au^2}$$
 ('scaling spectrum')

• formally : 'BDMPSZ \times survival probability for the leading particle'

... but in reality one was expecting the following picture !

The scaling spectrum

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}$$

• Soft region of the spectrum $x \ll 1$ (and for any time τ) :

$$D(x \ll 1, au) \simeq rac{ au}{\sqrt{x}} \mathrm{e}^{-\pi au^2}$$
 ('scaling spectrum')

 \bullet formally : 'BDMPSZ \times survival probability for the leading particle'

• ... but in reality one was expecting the following picture !

• The second picture is nevertheless the right one !

The fixed point

• Multiple branchings are very efficient at small $x \lesssim \tau^2$, yet they have no consequence on the shape of the spectrum

- The scaling spectrum is a fixed point of the rate equation:
 - $\bullet\,$ precise cancellation between 'gain' and 'loss' terms at any $x\ll 1$
- Via successive branchings, the energy flows from large x to small x, without accumulating at any intermediate value of x

The fixed point

• Multiple branchings are very efficient at small $x \lesssim \tau^2$, yet they have no consequence on the shape of the spectrum

• the energy fraction which remains in the spectrum at time τ :

$$\int_0^1 \mathrm{d}x \, D(x,\tau) = \mathrm{e}^{-\pi\tau^2}$$

- The scaling spectrum is a fixed point of the rate equation:
 - $\bullet\,$ precise cancellation between 'gain' and 'loss' terms at any $x\ll 1$
- Via successive branchings, the energy flows from large x to small x, without accumulating at any intermediate value of x
- The energy flows out from the spectrum ... exponentially fast !

Wave turbulence

• The rate for energy transfer from one parton generation to the next one is independent of the generation (i.e. of x)

- The definition of wave turbulence (Kolmogorov, '41; Zakharov, '92 ...)
 - the prototype: Richardson cascade for breaking-up vortices

Compare to DGLAP cascade (jet in the vacuum)

- No flow: the energy remains in the spectrum: $\int_0^1 dx D(x,\tau) = 1$
- The asymmetric splittings amplify the number of gluons at small x
- Yet, the energy remains in the few partons with larger values of x
- That is, the energy remains at small angles

The energy flow

- Via successive branchings, the energy flows down to x = 0
 - formally, it accumulates into a 'condensate' at x = 0
 - physically, it goes below $x_{\rm th}=T/E\ll 1$, meaning it thermalizes
- The energy fraction carried away by this flow :

$$\mathcal{E}_{\text{flow}}(\tau) \equiv 1 - \int_0^1 \mathrm{d}x \, D(x,\tau) = 1 - \mathrm{e}^{-\pi \tau^2}$$

- This energy emerges at very (arbitrarily) large angles !
- Universality : the energy loss via flow is
 - independent of the jet angular opening
 - independent of the details of the thermalization mechanism
 - a property of the gluon cascade, not of the in-medium dissipation

Applications to phenomenology

- In principle, the whole energy of the jet can be lost via flow
 - via arbitrarily soft particles which propagate at arbitrarily large angles

$$\mathcal{E}_{\text{flow}}(\tau) \equiv 1 - \int_0^1 \mathrm{d}x \, D(x,\tau) = 1 - \mathrm{e}^{-\pi\tau^2}$$

• In practice, this depends upon the maximal value of au, that is

 $\bullet\,$ upon the jet energy E & upon the medium properties \hat{q} and L

$$au=lpha_s\sqrt{{\hat q\over E}}~L~\sim~0.3$$
 for $E=100~{
m GeV}$

• $1-e^{-\pi\tau^2}\sim 0.25 \Rightarrow$ about 25% of the energy is lost at large angles

• After restoring the physical units :

$$E_{
m flow} \simeq \pi \, \alpha_s^2 \, \hat{q} L^2 \qquad (\sim \ 20 \, {
m GeV} \, \, {
m for} \, \, L = 5 \, \, {
m fm})$$

 \bullet ... which is independent of the original energy E !

Energy loss at large angles

• How much of the jet energy emerges at angles $\theta > \theta_0$?

$$heta(\omega) \simeq rac{Q_s}{\omega} = rac{Q_s}{xE} \implies heta(x) > heta_0 \iff x < x_0 \equiv rac{Q_s}{E heta_0}$$

• The energy fraction at $x < x_0$ has 2 components: 'spectrum' & 'flow'

$$\mathcal{E}(x \le x_0, au) = \int_0^{x_0} \mathrm{d}x \, D(x, au) + \mathcal{E}_{\mathrm{flow}}(au)$$

- the 'spectrum' piece is dominated by the relatively hard gluons with $x\sim x_0$
- the 'flow' piece is independent of x_0 and dominated by very soft gluons with $x\sim x_{\rm th}\ll x_0$
- 'flow'dominates over 'spectrum' for sufficiently large angle θ_0
- Di-jet asymmetry (energy loss at large angles) is controlled by flow

Energy loss at large angles

• How much of the jet energy emerges at angles $\theta > \theta_0$?

$$heta(\omega) \simeq rac{Q_s}{\omega} = rac{Q_s}{xE} \implies heta(x) > heta_0 \iff x < x_0 \equiv rac{Q_s}{E heta_0}$$

• The energy fraction at $x < x_0$ has 2 components: 'spectrum' & 'flow'

$$\mathcal{E}(x \le x_0, \tau) = 2\tau \sqrt{x_0} e^{-\pi\tau^2} + (1 - e^{-\pi\tau^2}) \simeq 2\tau \sqrt{x_0} + \pi\tau^2$$

- we assume $x_{\rm th} < x_0 \ll 1$ and $\pi \tau^2 \ll 1$
- $E = 100~{\rm GeV},~Q_s = 2.5~{\rm GeV},~T = 1~{\rm GeV},~\theta_0 = 0.5$

 $\implies x_{\rm th} = 0.01, \ x_0 = 0.05, \ \pi \tau^2 \simeq 0.3$

• 'flow' dominates when $x_0 \lesssim (\pi^2/4) \tau^2 \simeq 0.2$, i.e. when

$$\theta_0 \gtrsim \frac{2}{\pi^2} \frac{Q_s}{\bar{lpha}_s^2 \omega_c} \sim \frac{2Q_s}{\omega_c} \simeq 0.2$$

• 'flow' is built with quanta having $x \sim x_{
m th}$, or $\omega \sim T \sim 1~{
m GeV}$

Di-jet asymmetry at the LHC (CMS)

• Qualitative and even quantitative agreement with the LHC data

Such an agreement would be impossible without the 'turbulent flow'

Radiative momentum broadening

- So far: the effects of transverse momentum broadening on the medium-induced radiation
- The opposite effect exists as well: medium-induced gluon emissions contribute to momentum broadening, via their recoil

- A large radiative correction to \hat{q} (Liou, Mueller, Wu, 13)
 - \bullet formally suppressed by α_s but enhanced by large logarithms coming from integrating over the phase–space
- To evaluate this, we also need the distribution of the radiation in k_{\perp}

The double logarithmic correction

 Dominant effect from relatively hard emissions (large k_⊥), as triggered by a single scattering (Gunion–Bertsch spectrum)

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega \,\mathrm{d}^2 \boldsymbol{k}} \simeq \frac{\alpha_s N_c}{\pi^2} \frac{\hat{q}L}{k_\perp^4} \qquad (\mathsf{N}.\mathsf{B}.: \text{linear in } \hat{q})$$

• The radiative contribution to the $p_\perp-{\rm broadening}$ of the quark:

$$\langle p_{\perp}^2
angle_{
m rad} = \int_{\omega, \boldsymbol{k}} \boldsymbol{k}^2 \, \frac{\mathrm{d}N}{\mathrm{d}\omega \, \mathrm{d}^2 \boldsymbol{k}} \sim L \, \alpha_s \hat{q} \int \frac{\mathrm{d}\omega}{\omega} \int \frac{\mathrm{d}^2 k_{\perp}}{k_{\perp}^2} \equiv L \, \Delta \hat{q}$$

Jet Summer School @ UC Davis Jet evolution in a dense QCD medium: III E. lancu, June 20, 2014 26 / 32

A renormalization group equation for \hat{q}

• The limits of the phase-space are simpler in terms of the fluctuation lifetime $\tau = 2\omega/k_{\perp}^2$ (below, $\lambda \equiv 1/T$: thermal wavelength)

$$\frac{\Delta \hat{q}}{\hat{q}} \sim \alpha_s \int_{\lambda}^{L} \frac{\mathrm{d}\tau}{\tau} \int_{\hat{q}\tau}^{\hat{q}_L} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} = \frac{\alpha_s N_c}{2\pi} \ln^2(LT) \simeq 1$$

- $\bullet\,$ a relatively large correction \Longrightarrow needs for resummation
- To double-logarithmic accuracy the higher-loop corrections are strongly ordered in lifetimes and transverse momenta

$$\hat{q}(L) = \hat{q}^{(0)} + \bar{\alpha} \int_{\lambda}^{L} \frac{\mathrm{d}\tau}{\tau} \int_{\hat{q}\tau}^{\hat{q}L} \frac{\mathrm{d}k_{\perp}^{2}}{k_{\perp}^{2}} \hat{q}_{\tau}(k_{\perp}^{2})$$

(E.I., arXiv:1403.1996; Blaizot and Mehtar-Tani, arXiv:1403.2323)

• (For experts:) Not the standard DLA eq. (different integration limits)

From fixed to running coupling

• The solution for a fixed QCD coupling α_s (Liou, Mueller, Wu, 13)

$$\hat{q}(L) = \hat{q}^{(0)} \frac{1}{\sqrt{\bar{\alpha}} \ln \left(L/\lambda\right)} \operatorname{I}_1\left(2\sqrt{\bar{\alpha}} \ln \frac{L}{\lambda}\right) \propto L^{2\sqrt{\bar{\alpha}}}$$

• large anomalous dimension $\gamma_s = 2\sqrt{\bar{\alpha}} \sim 1$ (with $\bar{\alpha} = \alpha_s N_c/\pi$)

• However, this is qualitatively modified by the running of the coupling (E.I., D.N. Triantafyllopoulos, to appear)

$$\hat{q}(L) = \hat{q}^{(0)} + \int_{\lambda}^{L} \frac{\mathrm{d}\tau}{\tau} \int_{\hat{q}\tau}^{\hat{q}L} \frac{\mathrm{d}k_{\perp}^{2}}{k_{\perp}^{2}} \,\bar{\alpha}(k_{\perp}^{2}) \,\hat{q}_{\tau}(k_{\perp}^{2})$$

 $\implies \ln \hat{q}(L) \simeq 4 \sqrt{b_0 \ln \frac{L}{\lambda}}$ (slower than any exponential)

• The pre-asymptotic corrections too are under control

From fixed to running coupling

Fixed coupling $\bar{\alpha} = 0.35$

Running coupling (1 loop)

- $Y \equiv \ln(L/\lambda)$: evolution 'time'; at RHIC and LHC, $Y = 2 \div 4$.
- Similar predictions with FC and RC for the physical value Y = 3: enhancement by a factor of 3

Jet Summer School @ UC Davis Jet evolution in a dense QCD medium: III E. Iancu, June 20, 2014 29 / 32

Conclusions

- Remarkable progress in understanding medium-induced jet evolution
 - a new kind of branching process in pQCD
 - hard emissions at small angles (energy loss by leading particle, R_{AA})
 - soft, quasi-democratic, branchings leading to turbulent flow (di-jet asymmetry)
 - probabilistic picture, well suited for Monte Carlo implementations
 - fully 3+1-dim simulations possible \implies jet shapes
 - $\bullet\,$ large radiative corrections to \hat{q} which are under control in pQCD
- Many open problems:
 - proper interplay with 'vacuum' radiation
 - fully (3+1)-dim simulations, extensive phenomenology ...

THANK YOU !

Energy transport at large angles

• Just a little fraction of the 'missing energy' is recovered when gradually increasing the jet opening : most of the energy is lost at large angles

• What is the mechanism for energy transport at large angles ?

Energy flow at large angles

• The energy inside the jet is only weakly increasing with the jet angular opening R, within a wide range of values for R S