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Background and Motivation

Hanbury
Brown-Twiss

(HBT) . . ). .
Wi  Hanbury-Brown—Twiss (HBT) interferometry (also, "intensity
with respect . , f f . .

to thel |nterferometry or femtoscopy ) relies on two—partlcle

triangular

flow-plane momentum correlations to study the geometric and flow
properties of heavy-ion collisions:

m azimuthally-sensitive HBT analyses communicate
important information about deformations in the structure
of the freeze-out surface

m odd harmonics present in HBT radii known to open the
window to the study of event-by-event fluctuations

m fulfills a vital role in constraining the initial state of the
fireball and its subsequent evolution



HBT Basics
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with respect ) = N N — = i 1 — —
to the Two particles: p1, po — §=p1 — p2, K = =(p1 + p2)
triangular 2
flow-plane
Ep, Ep, d3P1d3P2

Correlation function: C(p1, p2) = — .
(En i) (Emit)

Ignoring final-state interactions, C may be fit to the form:

(q,K)—li)\( exp Z R q,-qJ- ,
ij=o,s,l

R; = Ri(\ff[, ) — measure ®y with respect to what?



Fourier moments of R,f(i?)

H b . .
g m Experimentally, one measures HBT correlations as a

(HBT) function of the difference between ®x and one of the flow

interferometry

D e angles ¥,
sl = we plot observable quantities against ®x — V¥,
(n=1,2,3,..))
m The flow angle is defined by W, in v,e™» = <ei”¢P>
m The v, are the anisotropic flow coefficients and ¢, is the
azimuthal angle of pr of the emitted particles in the lab
frame

m = Fourier-decompose the R,-2-:

RA(IK|, &) = 22( RI(IK]) cosln(@x — W)

+ [RI)sinln(®x — Wa)]) + R3 o(IK])

Rika (
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PHENIX data

g Hanbury T. Niida, (QM 2012, arXiv:1304.2876) (integrated over K )
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Important features to understand:
m Different signs of Fourier coefficients in out and side
directions
m Different oscillation amplitudes: Rg,,,/Rf’,, >1



Emission function

Ity We define the emission function S(x, K) as the Wigner density

Brown-Twiss

~ (HBT) of the fireball
interferometry
with respect dN
o the el . . 4 _
o Emission function: /d xS(x,K) = EK—d3K

flow-plane

Taking A(K) =1, C and S may be related by

[ d*xe>S(x, K)|?
J d*x S(x, K)

CG,K)~1+

m For Gaussian sources S(x, K), R = (% — 8it)(% — B;t)),
where
mX=x—(x),t=t—(t), =K/K® and

d*x f(x)S(x,K
m (f(x)) = L5000

= given S(x, K), Rg(R) may be computed directly



Emission function
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rmgotar m Consider S with two kinds of different triangular
flovcplane deformations:
: m " Geometric case” - Triangular spatial deformation with
radial flow, no triangular flow

m "Flow case” - Triangular flow, no spatial deformation
m Can obtain triangular oscillations of Rg- from

m triangular flow deformation

m triangular spatial deformation coupled to radial flow

m combinations thereof
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HBT oscillation amplitudes: two examples

Geometric case

Flow case
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Conclusions
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with respect m Without radial flow, a triangular spatial deformation of the
to the

triangular source at freeze-out leaves no measurable trace in the
fierie Bl HBT radii oscillations

m Triangular oscillations of HBT radii may generally result
from an admixture of triangular collective flow and
triangular spatial deformation coupling to radially
symmetric flow

m We can distinguish " flow domination” from " geometry
domination” by the phases and Kr-dependence of the
respective oscillation amplitudes; PHENIX data appear to
point to " flow domination”
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@ T hanks for your attention!

Plum

Thanks also to my collaborators

Ulrich Heinz and Chun Shen!
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Double-Fourier formalism

Hanbury Define

Brown-Twiss

(HBT) . ™ . & :
interferometry SZ m = e—lm\U3 / @eleq5 / d¢ie1m¢K S(¢, ¢K)7

with respect
to the ™ 27T 27T

—T
triangular
flow-plane

00
— Zy = e Vs Z Sg’m_ge_im((bK_\%) =X+

m=—0o0

We can show, e.g.,

(x2) = / ‘dn/o TdT/O rdrrr? (X — &)

(xs) = / dn/k TdT/\ rdr2mwr)s
J —o0 J0 J0O

m Since R? = <X52> — <xs>2, no dependence on ¢ > 3
(similarly for other R,-Jz-)!

m N.B.: same expression contains all orders in
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Double-Fourier formalism

Hanbury Define

Brown-Twiss

(HBT) . ™ . & :
interferometry Sy = e—imVs / @e15¢ / dc’lelmtbK S((;S ¢K)
ith t ’ ’ ’
g " 2T 2n

triangular

flow-plane

—Tr

00
— Zy = e Vs Z Sg’m_ge_im((b’(_\%) =X+

m=—oQ

We can show, e.g.,

(x2) = /_ d’l7/0 TdT/O rdrrr? (Xo — A3)

(xs) = / dn/ TdT/ rdr2mr))
—o0 0 0

m Since R? = (x2) — (xs)?, no dependence on £ > 3
(similarly for other R,-Jz-)!
m N.B.: same expression contains all orders in P
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Double-Fourier formalism

Hanbury Define
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—Tr

(o]
e — 2, = eV N S e MOV = x4y,

Plumberg m=—00

We can show, e.g.,

(x2) = /_ dn/o TdT/O rdrrr? (Xo — A3)

(xs) = / dn/ TdT/ rdr2mr))
—o0 0 0

m Since R? = (x2) — (xs)°, no dependence on ¢ > 3
(similarly for other Rg)!

m N.B.: same expression contains all orders in
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Toy model for the source

Hanbury
Brown-Twiss

) _ S(K) [ =) (=)
e ] BTN R T
trit;)n;uelar r2 -
—5p (1+ 283 cos(3(6 — 73))

M K
—  ZE cosh(n — Y)coshn + —= cos(¢ — Dk ) sinh 1,
To To

where
ner

"= (1+ 275 cos(3(¢ — 1/3)))

€3: triangular azimuthal deformation
v3: triangular flow deformation
7n¢: collective radial flow rapidity

b3 triangular flow velocity angle, points in direction of largest flow
rapidity and steepest descent of spatial density profile (note:
W, #£ 1, in general)
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