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What is QCD?

From: T. Schaefer, QM08 student talk 
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QCD and hadrons
Quarks and gluons are the fundamental particles of QCD 

(feature in the Lagrangian)

However, in nature, we observe hadrons: 
Color-neutral combinations of quarks, anti-quarks

Baryon multiplet Meson multiplet

Baryons: 3 quarks

I3 (u,d content)
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I3 (u,d content)

Mesons: quark-anti-quark



4

Seeing quarks and gluons

In high-energy collisions, observe traces of quarks, gluons (‘jets’)
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How does it fit together?
S. Bethke, J Phys G 26, R27

Running coupling: 
αs decreases with Q2

Pole at µ = Λ

ΛQCD ~ 200 MeV ~ 1 fm-1

Hadronic scale
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Soft QCD matter and hard probes

Hard-scatterings produce ‘quasi-free’ partons 
⇒ Initial-state production known from pQCD 

⇒ Probe medium through energy loss

Heavy-ion collisions produce 
QCD matter 

Dominated by soft partons  
p ~ T ~ 100-300 MeV

‘Hard Probes’: sensitive to medium density, transport properties
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Hard processes in QCD
• Hard process: scale Q >> ΛQCD 

• Hard scattering High-pT parton(photon) Q ~ pT 

• Heavy flavour production m >> ΛQCD

Cross section calculation can be split into  
• Hard part: perturbative matrix element 
• Soft part: parton density (PDF), fragmentation (FF)

Soft parts, PDF, FF are universal: independent of hard process

QM interference between hard and soft suppressed (by Q2/Λ2 ‘Higher Twist’) 

Factorization
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Singularities in pQCD

Closely related to hadronisation effects

(massless case)

Soft divergence Collinear divergence
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Seeing quarks and gluons

In high-energy collisions, observe traces of quarks, gluons (‘jets’)
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         The first and only ep collider in the world

    e±           p 
!
!

27.5 GeV        920 GeV

√s = 318 GeV 

Equivalent to fixed target experiment with 50 TeV e±

Hera at DESY near Hamburg

H1

Zeus

The HERA Collider 
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XpeXepe ee +→++→+ ±±± )(   :CC       ,     :NC νν

NC:

CC:

DIS: Measured electron/jet momentum fixes kinematics: x, Q2

Example DIS events
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Proton structure F2

Q2: virtuality of the γ	


x = Q2 / 2 p q 

‘momentum fraction  
of the struck quark’

F2: essentially a cross section/scattering probability
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Factorisation in DIS

Integral over x is DGLAP evolution with splitting kernel Pqq
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Parton density distribution
Low Q2: valence structure

Valence quarks (p = uud) 
x ~ 1/3

Soft gluons

Q2 evolution (gluons)

Gluon content of proton rises 
quickly with Q2
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p+p → dijet at Tevatron

Tevatron: p + p at √s = 1.9 TeV

Jets produced with several 100 GeV
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Testing QCD at high energy

sm
all x

large x

x = partonic 
momentum 

fraction

Theory matches data over many orders of magnitude
Universality: PDFs from DIS used to calculate jet-production in pp

CDF, PRD75, 092006

DIS to measure PDFs

parton density matrix element

Dominant ‘theory’ 
uncertainty: PDFs
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Towards hadron production: 
Fragmentation Functions
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e+e- → qq → jets

Direct measurement of fragmentation functions
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pQCD illustrated
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CDF, PRD75, 092006

jet spectrum ~ 
parton spectrum
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Note: difference p+p, e++e-

p+p: steeply falling jet spectrum 
Hadron spectrum convolution  

of jet spectrum with fragmentation

e+ + e- QCD events: jets 
have p=1/2 √s 

Directly measure frag function
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Global analysis of FF
proton anti-protonpions

De Florian, Sassot, Stratmann, PRD 76:074033, PRD75:114010

Some FF fits include RHIC data to constrain gluon fragmentation

Global analysis: use measurements, mostly e+e- at different √s;!
fit with initial distribution + DGLAP evolution
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Fragmentation function fits
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quark (u) fragmentation

Fragmentation function fits based on e+e-: 
large uncertainty in gluon fragmentation 

Some groups use hadron production to further constrain FFs

d’Enterria et al, arXiv:1311.1415



23

Adding the LHC data in the game

d’E
nterria et al, arX

iv:1311.1415

Kretzer fragmentation
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Ratios data/theory with uncertainties

Factor ~2 spread of results due to FF parameterisations
Mostly due to uncertainty in gluons: next step: use data to constrain gluon FF

Also note: large scale uncertainties at pT < 5 GeV
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RHIC and LHC

STARSTAR

RHIC, Brookhaven LHC, Geneva
Au+Au √sNN= 200 GeV Pb+Pb √sNN= 2760 GeV

First run: 2000 First run: 2009/2010

STAR, PHENIX,!
PHOBOS, BRAHMS

ALICE, ATLAS,  
CMS, (LHCb)

Currently under maintenance!
Restart 2015 with higher energy:  

pp √s = 13 TeV, PbPb √sNN = 5.12 TeV
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Intermezzo: Centrality

Central collisionPeripheral collision

top/side  
view:

front view:

b~0 fm

b

Nuclei are large compared to the range of strong force

Size of reaction zone, density depends on centrality: 
Expect smaller/no QGP effects in peripheral collisions

b finite
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Centrality continued
centralperipheral

Multiplicity distribution

Experimental measure of centrality: multiplicity



27

Nuclear geometry: Npart, Ncoll

b

Two limiting possibilities: 
- Each nucleon only interacts once, ‘wounded nucleons’ 

Npart = nA + nB  (ex: 4 + 5 = 9 + …)  
Relevant for soft production; long timescales: σ ∝ Npart   

- Nucleons interact with all nucleons they encounter 
Ncoll = nA x nB (ex: 4 x 5 = 20 + …)  
Relevant for hard processes; short timescales: σ ∝ Nbin
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Centrality dependence of hard processes

dσ/dNch 
200 GeV Au+Au

Rule of thumb for A+A collisions (A>40)  
40% of the hard cross section  

is contained in the 10% most central collisions

Binary collisions weight  
towards small impact parameter

Total multiplicity: soft processes
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Testing volume (Ncoll) scaling in Au+Au 

PHENIX

Direct γ spectra

Scaled by Ncoll

PHENIX, PRL 94, 232301

Direct γ in A+A scales with Ncoll

Centrality

A+A initial state is incoherent superposition of p+p for hard probes
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π0 RAA – high-pT suppression

Hard partons lose energy in the hot matter

γ: no interactions

Hadrons: energy loss

RAA = 1

RAA < 1

π0: RAA ≈ 0.2

γ: RAA = 1
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Nuclear modification factor

ppTcoll

PbPbT
AA dpdNN

dpdN
R

+

+=
/

/

Suppression factor 2-6 
Significant pT-dependence 
Similar at RHIC and LHC?

So what does it mean?
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Nuclear modification factor RAA

p+p

A+A

pT

1/
N

bi
n d

2 N
/d

2 p
T

‘Energy loss’

Shift spectrum to left

‘Absorption’

Downward shift

Measured RAA is a ratio of yields at a given pT 
The physical mechanism is energy loss; shift of yield to lower pT

The full range of physical pictures can be  
captured with an energy loss distribution P(ΔE)
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Getting a sense for the numbers – RHIC

Oversimplified calculation: 
-Fit pp with power law 
-Apply energy shift or relative E loss 

Not even a model !

Ball-park numbers: ΔE/E ≈ 0.2, or ΔE ≈ 3 GeV  
for central collisions at RHIC

π0 spectra Nuclear modification factor

P
H

E
N

IX
, P

R
D

 76, 051106, arX
iv:0801.4020
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From RHIC to LHC
RHIC: 200 GeV 
LHC: 2.76 TeV  per nucleon pair

Energy ~14 x higher

LHC: spectrum less steep,  
larger pT reach

RHIC: n ~ 8.2 
LHC: n ~ 6.4

Fractional energy loss:

RAA depends on n, steeper spectra, smaller RAA
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From RHIC to LHC

RHIC LHC

RHIC: n ~ 8.2 LHC: n ~ 6.4

( ) 20.023.01 2.6 =− ( ) 32.023.01 4.4 =−

Remember: still ‘getting a sense for the numbers’; this is not a model!
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Towards a more complete picture

• Energy loss not single-valued, but a distribution 
• Geometry: density profile; path length distribution 
• Energy loss is partonic, not hadronic 

– Full  modeling: medium modified shower 
– Simple ansatz for leading hadrons: energy loss 

followed by fragmentation 
– Quark/gluon differences
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Geometry

Density profile

Profile at τ ~ τform known

Density along parton path

Longitudinal expansion  
dilutes medium 
⇒ Important effect

Space-time evolution is taken into account in modeling
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)/()( , jethadrT
jetshadrT

EpDEP
dE
dN

dp
dN

⊗Δ⊗=

`known’ from e+e-known 
pQCDxPDF

extract

Parton spectrum Fragmentation (function)Energy loss distribution

This is where the information about the medium is
P(ΔE) combines geometry  
with the intrinsic process 

– Unavoidable  for many observables

Notes: 
• This is the simplest ansatz – most calculation to date use it (except some 

MCs) 
• Jet, γ-jet measurements ‘fix’ E, removing one of the convolutions

A simplified approach
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Situation at RHIC, ca 2008
B

ass et al, P
R

C
79, 024901ASW: 

HT: 
AMY:

/fmGeV2010ˆ 2−=q
/fmGeV5.43.2ˆ 2−=q

/fmGeV4ˆ 2≈q

Large density: 
AMY: T ~ 400 MeV 
Transverse kick: qL ~ 10-20 GeV

Large uncertainty in  
absolute medium density

P
H

E
N

IX
, arX

iv:1208.2254

3 main calculations; comparison  
with same medium density profile

One aspect: scattering potential/momentum transfer;  
see recent work by Majumder, Laine, Rothkopf on lattice
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Burke et al, JET C
ollaboration, arXiv:1312.5003
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Systematic comparison of energy loss models with data!
Medium modeled by Hydro (2+1D, 3+1D)

pT dependence matches reasonably well



RHIC and LHC

41

1 1.5 2 2.5 3 3.5
0

1

2

3

4

/d
.o

.f
2

χ
/fm (LHC)2 GeV

0
q

PHENIX 08+12

CMS+ALICE

 0

 2

 4

 6

 8

 10

 0.2  0.22  0.24  0.26  0.28  0.3  0.32

χ2 /d
.o

.f.
(p

T>
8)

αmax

PHENIX 08+12
CMS+ALICE

CUJET 2.0 HT-BW

CUJET: 𝛼s is medium parameter!
Lower at LHC

HT: transport coeff is parameter!
Higher at LHC

Burke et al, JET C
ollaboration, arXiv:1312.5003



Summary of transport coefficient study
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Summary

• Main tool for hard probes: factorisation!
• cross section = PDF ⊗ partonic xsec ⊗ FFs!

• AA collisions: hard processes scale with Ncoll (in 
absence of medium effects; e.g. photons)!

• Nuclear modification factor RAA < 1: (parton) 
energy loss!
• Energy loss O(5 GeV) or ΔE/E ~ 0.20!
• More quantitative study: transport coefficient larger at LHC!
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Asymptotic freedom and pQCD
At large Q2, hard processes:  

calculate ‘free parton scattering’

At high energies, quarks 
and gluons are manifest

gqqee →−+

But need to add hadronisation (+initial state PDFs)

+ more subprocesses
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Low Q2: confinement

Lattice QCD potential

α large, perturbative techniques not suitable

Lattice QCD: solve equations of 
motion (of the fields) on a space-

time lattice by MC

String breaks, generate qq 
pair to reduce field energy

Bali, hep-lat/9311009


