Lecture 1: introduction to hard probes; nuclear modification factor

Marco van Leeuwen, Nikhef and Utrecht University

JET School, UC Davis, 19-21 June 2014

What is QCD?

What is QCD (Quantum Chromo Dynamics)?

Elementary fields: Quarks Gluons $(q_{\alpha})_{f}^{a} \begin{cases} \text{color} \quad a = 1, \dots, 3\\ \text{spin} \quad \alpha = 1, 2\\ \text{flavor} \quad f = u, d, s, c, b, t \end{cases} A_{\mu}^{a} \begin{cases} \text{color} \quad a = 1, \dots, 8\\ \text{spin} \quad \epsilon_{\mu}^{\pm} \end{cases}$

Dynamics: Generalized Maxwell (Yang-Mills) + Dirac theory

From: T. Schaefer, QM08 student talk

QCD and hadrons

Quarks and gluons are the fundamental particles of QCD (feature in the Lagrangian)

However, in nature, we observe hadrons: Color-neutral combinations of quarks, anti-quarks

Baryon multiplet

Meson multiplet

Mesons: quark-anti-quark

Seeing quarks and gluons

In high-energy collisions, observe traces of quarks, gluons ('jets')

How does it fit together?

Soft QCD matter and hard probes

Hard-scatterings produce 'quasi-free' partons ⇒ Initial-state production known from pQCD ⇒ Probe medium through energy loss

'Hard Probes': sensitive to medium density, transport properties

Hard processes in QCD

- Hard process: scale Q >> Λ_{QCD}
- Hard scattering High- p_T parton(photon) Q ~ p_T
- Heavy flavour production m >> Λ_{QCD}

Factorization

Cross section calculation can be split into

- Hard part: perturbative matrix element
- Soft part: parton density (PDF), fragmentation (FF)

QM interference between hard and soft suppressed (by Q^2/Λ^2 'Higher Twist')

Soft parts, PDF, FF are *universal*: independent of hard process

Singularities in pQCD

Closely related to hadronisation effects

Seeing quarks and gluons

In high-energy collisions, observe traces of quarks, gluons ('jets')

The HERA Collider

The first and only ep collider in the world Hera at DESY near Hamburg

Equivalent to fixed target experiment with 50 TeV e[±]

Example DIS events

NC: $e^{\pm} + p \rightarrow e^{\pm} + X$, CC: $e^{\pm} + p \rightarrow \overline{v_e}(v_e) + X$

DIS: Measured electron/jet momentum fixes kinematics: x, Q^2

Proton structure F₂

 F_2 : essentially a cross section/scattering probability

Factorisation in DIS

the physical structure fct. is independent of μ_f (this will lead to the concept of renormalization group eqs.)

both, pdf's and the short-dist. coefficient depend on μ_f (choice of μ_f : shifting terms between long- and short-distance parts)

Integral over x is DGLAP evolution with splitting kernel P_{qq}

Parton density distribution

Low Q²: valence structure

Q² evolution (gluons)

$p+\overline{p} \rightarrow dijet at Tevatron$

Tevatron: p + p at $\sqrt{s} = 1.9$ TeV

Jets produced with several 100 GeV

Testing QCD at high energy

Towards hadron production: Fragmentation Functions

 $e^+e^- \rightarrow qq \rightarrow jets$

Direct measurement of fragmentation functions

0.4

0.2

-0.2 -0.4

0.4 0.2

0

-0.2 (data - theory)/theory -0.4 0.1 0 0.1 0 0.1 0 0.4 0.0 0 -0.2 0 0.4 0 0

-0.2 -0.4

0.6

0.4

0.2

Z 1

0 -0.2

0

pQCD illustrated

Note: difference p+p, e⁺+e⁻

p+p: steeply falling jet spectrum Hadron spectrum convolution of jet spectrum with fragmentation e⁺ + e⁻ QCD events: jets have p=1/2 √s Directly measure frag function

Global analysis of FF

De Florian, Sassot, Stratmann, PRD 76:074033, PRD75:114010 Global analysis: use measurements, mostly e+e- at different √s; fit with initial distribution + DGLAP evolution

Some FF fits include RHIC data to constrain gluon fragmentation

Fragmentation function fits

Fragmentation function fits based on e⁺e⁻: large uncertainty in gluon fragmentation Some groups use hadron production to further constrain FFs

Adding the LHC data in the game

Factor ~2 spread of results due to FF parameterisations Mostly due to uncertainty in gluons: next step: use data to constrain gluon FF Also note: large scale uncertainties at $p_T < 5$ GeV

RHIC and LHC

RHIC, Brookhaven Au+Au √s_{NN}= 200 GeV

LHC, Geneva Pb+Pb $\sqrt{s_{NN}}$ = 2760 GeV

First run: 2000

STAR, PHENIX, PHOBOS, BRAHMS

First run: 2009/2010

Currently under maintenance Restart 2015 with higher energy: pp $\sqrt{s} = 13$ TeV, PbPb $\sqrt{s_{NN}} = 5.12$ TeV

> ALICE, ATLAS, CMS, (LHCb)

Intermezzo: Centrality

Nuclei are large compared to the range of strong force

Size of reaction zone, density depends on centrality: Expect smaller/no QGP effects in peripheral collisions

Centrality continued

peripheral

central

Experimental measure of centrality: multiplicity

Nuclear geometry: N_{part}, N_{coll}

Two limiting possibilities:

- Each nucleon only **interacts once**, 'wounded nucleons' $N_{part} = n_A + n_B$ (ex: 4 + 5 = 9 + ...)

Relevant for **soft production**; long timescales: $\sigma \propto N_{\text{part}}$

Nucleons interact with all nucleons they encounter
 N_{coll} = n_A x n_B (ex: 4 x 5 = 20 + ...)

Relevant for hard processes; short timescales: $\sigma \propto N_{\text{bin}}$

Centrality dependence of hard processes

Rule of thumb for A+A collisions (A>40) 40% of the hard cross section is contained in the 10% most central collisions

Testing volume (N_{coll}) scaling in Au+Au

Direct y spectra

PHENIX, PRL 94, 232301

Direct γ in A+A scales with N_{coll}

A+A initial state is incoherent superposition of p+p for hard probes

$\pi^0 R_{AA}$ – high-p_T suppression

Hard partons lose energy in the hot matter

Hadrons: energy loss

Nuclear modification factor

Suppression factor 2-6 Significant p_T -dependence Similar at RHIC and LHC?

So what does it mean?

Measured R_{AA} is a ratio of yields at a given p_T The physical mechanism is energy loss; shift of yield to lower p_T

The full range of physical pictures can be captured with an energy loss distribution $P(\Delta E)$

Getting a sense for the numbers – RHIC

Ball-park numbers: ∆E/E ≈ 0.2, or ∆E ≈ 3 GeV for central collisions at RHIC

From RHIC to LHC

 R_{AA} depends on *n*, steeper spectra, smaller R_{AA}

From RHIC to LHC

RHIC

$$(1-0.23)^{6.2} = 0.20$$
 $(1-0.23)^{4.4} = 0.32$

Remember: still 'getting a sense for the numbers'; this is not a model!

Towards a more complete picture

- Energy loss not single-valued, but a distribution
- Geometry: density profile; path length distribution
- Energy loss is partonic, not hadronic
 Full modeling: medium modified shower
 - Simple ansatz for leading hadrons: energy loss followed by fragmentation
 - Quark/gluon differences

Geometry

Space-time evolution is taken into account in modeling

A simplified approach

Notes:

- This is the simplest ansatz most calculation to date use it (except some MCs)
- Jet, γ-jet measurements 'fix' E, removing one of the convolutions

Situation at RHIC, ca 2008

3 main calculations; comparison with same medium density profile

$$\hat{q} = \int_0^{q_{max}} dq_T^2 q_T^2 \frac{d\sigma}{dq_T}$$

ASW: $\hat{q} = 10 - 20 \text{ GeV}^2/\text{fm}$ HT: $\hat{q} = 2.3 - 4.5 \,\mathrm{GeV}^2/\mathrm{fm}$ AMY: $\hat{q} \approx 4 \,\mathrm{GeV}^2/\mathrm{fm}$

Large density: AMY: T ~ 400 MeV Transverse kick: qL ~ 10-20 GeV

```
Large uncertainty in
absolute medium density
```


One aspect: scattering potential/momentum transfer; see recent work by Majumder, Laine, Rothkopf on lattice Bass

et al,

RHIC and LHC

Systematic comparison of energy loss models with data Medium modeled by Hydro (2+1D, 3+1D) p_T dependence matches reasonably well

HT: transport coeff is parameter Higher at LHC

Summary of transport coefficient study

 \hat{q} / T^3 larger at RHIC than LHC: running of α_s ? Or: limited validity of models?

Summary

- Main tool for hard probes: factorisation
 - cross section = PDF \otimes partonic xsec \otimes FFs
- AA collisions: hard processes scale with N_{coll} (in absence of medium effects; e.g. photons)
- Nuclear modification factor R_{AA} < 1: (parton) energy loss
 - Energy loss O(5 GeV) or $\Delta E/E \sim 0.20$
 - More quantitative study: transport coefficient larger at LHC $\hat{q} \approx 1-3 \ GeV^2/fm$

Asymptotic freedom and pQCD

+ more subprocesses

At large Q², hard processes: calculate 'free parton scattering'

At high energies, quarks and gluons are manifest

But need to add hadronisation (+initial state PDFs)

Low Q²: confinement

