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A few selected results for p+Pb at LHC
NB: no time to cover everything; mainly pointers to interesting  

results, see QM summary talks for more details
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Parton density distribution
pp, low Q2: valence structure

Valence quarks (p = uud) 
x ~ 1/3

Soft gluons

Enhancement  
at intermediate x:  
‘anti-shadowing’

Low-x suppression:  
shadowing

gluons, Q2 = 1.69 GeV2

Nuclei: ratio to pp

Effects largest at low Q2



Hadron RpPb at LHC
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pp reference at 5.02 TeV
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No pp measurements at 5.02 TeV available  
All experiments use interpolations between 2.76 and 7 TeV

pp reference ratiopPb spectra ratio

Largest differences in reference spectra;  
revisit high-pt measurements at 2.76 and 7 TeV;  

measure pp at 5.05 TeV?

E. Appelt, Yenjie Lee @
 Q

M
2014



Cronin effect at LHC
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RpPb shows enhancement at intermediate pT for protons, Ξ!
No large effect for 𝜋, K, Φ

Cronin effect:

Interpretation/mechanism unclear: why does it depend on hadron type/mass? 
Can it be flow-like?



Parton kinematics and x ranges
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Incoming parton

larger x

Incoming parton

smaller x

outgoing parton

outgoing parton

Two partons at large η,!
asymmetric collision:  

large x + small x parton
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Varying x in p+Pb: di-jets
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Shift of distribution!
to larger η!
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expectation

Proton 
PDFs

Nuclear  
PDFs

NB: asymmetric beam  
energies: mid-rapidity !

is at η~0.4

CMS, arXiv:1401.4433
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Non-trivial correlation with  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di-jet moves away from forward activity
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O

N
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RpPb

Effect also depends on pT

C
M

S, arXiv:1401.4433



Note on centrality/geometry
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Pb

p

RpPb =
1
Ncoll

dNpPb / dpT
dNpp / dpT

Standard tool: multiplicity binning

Centrality: would like to vary  
impact parameter in experiment

Use geometrical model (Glauber) 
to calculate Ncoll

Ncoll fluctuations within the same centrality class are large!



p+Pb centrality II
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Interplay between Npart  
and higher multiplicity in!
individual NN collisions

Forward+backward multiplicity

Forward multiplicity

Biases affect estimation of Ncoll,  
value of ‘RpPb’



Back to A+A and parton energy loss



Recap: transport coefficient study
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      values from different models consistent 
(NB: multiple-soft scattering omitted)

            larger at RHIC than LHC: running of 𝛼s ?!
Or: limited validity of models?

RHIC:

LHC:

Burke et al, JET C
ollaboration, arXiv:1312.5003Expect factor 2.2 from  

multiplicity + nuclear size

(T=370 MeV)

(T=470 MeV)
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Recap: earlier study
B

ass et al, P
R

C
79, 024901

ASW: 
HT: 
AMY:

/fmGeV2010ˆ 2−=q
/fmGeV5.43.2ˆ 2−=q

/fmGeV4ˆ 2≈q

Large uncertainty in  
absolute medium density

P
H

E
N

IX
, arX

iv:1208.2254

One aspect: scattering potential/momentum transfer;  
see recent work by Majumder, Laine, Rothkopf on lattice

ASW requires much larger 
transport coefficient
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Medium-induced radiation

If λ < τf, multiple scatterings  
add coherently

2ˆ~ LqE Smed αΔ

2
2
T

f k
ω

τ =

Zapp, QM09

Lc = τf,max
propagating  

parton

radiated 
gluon

Landau-Pomeranchuk-Migdal effect 
Formation time important

Radiation sees  
length ~τf at once

Energy loss depends on density:
ρ

λ
1

∝

λ

2

ˆ
⊥

≡
q

q

and nature of scattering centers 
(scattering cross section)

Transport coefficient
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Four formalisms

• Hard Thermal Loops (AMY) 
– Dynamical (HTL) medium 
– Single gluon spectrum: BDMPS-Z like path integral 
– No vacuum radiation 

• Multiple soft scattering (BDMPS-Z, ASW-MS) 
– Static scattering centers 
– Gaussian approximation for momentum kicks 
– Full LPM interference and vacuum radiation 

• Opacity expansion ((D)GLV, ASW-SH) 
– Static scattering centers, Yukawa potential  
– Expansion in opacity L/λ  

(N=1, interference between two centers default) 
– Interference with vacuum radiation 

• Higher Twist (Guo, Wang, Majumder) 
– Medium characterised by higher twist matrix elements 
– Radiation kernel similar to GLV 
– Vacuum radiation in DGLAP evolution

Multiple gluon emission

Fokker-Planck 
rate equations

Poisson ansatz 
(independent emission)

DGLAP 
evolution

See also: arXiv:1106.1106

All formalisms can be related to the same BDMPS-Z path integral 
formalism; different approximations used
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The Brick Problem

Gluon(s)

Compare outgoing gluon, quark distributions
- Same density 
- Same suppression

Compare energy-loss in a well-defined model system: 
Fixed length L = 2, 5 fm 
Density T, q 
Quark, E = 10, 20 GeV

TECHQM: Theory-Experiment Collaboration on Hot Quark Matter

and interpret/understand the differences

Two types of comparison:

arXiv:1106.1106
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Large angle radiation
Emitted gluon distribution 

Opacity expansion

Calculated gluon spectrum extends to large k⊥ at small k 
Outside kinematic limits

kT < k

GLV, ASW, HT cut this off ‘by hand’

Gluon momentum k (GeV)
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Effect of large angle radiation
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Different large angle cut-offs: 
kT < ω = xE E 
kT < ω = 2 x+ E

Blue: kTmax = xE 
Red: kTmax = 2x(1-x)E

Single-gluon spectrum

Different definitions of x:

ASW: GLV:

Factor ~2 uncertainty  
from large-angle cut-off

H
orow

itz and C
ole, P

R
C

81, 024909

Opacity expansion formalisms 
!
!
Expand in powers of

λ
L
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Multiple soft scattering: BDMPS, AMY

Using            based on AMY-HTL scattering potential

L=2 fm Single gluon spectra L=5 fm Single gluon spectra

AMY: no large angle cut-off

)(ˆ Tq

+ sizeable difference at intermediate ω at L=2 fm
Large x treatment in AMY more accurate
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Single gluon spectra
Same temperature

@Same temperature:  AMY > OE > ASW-MS

L = 2 fm L = 5 fm

Size of difference depends on L, but hierarchy stays
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L-dependence; regions of validity?
Emission rate vs τ (=L)

Caron-Huot, Gale, arXiv:1006.2379

AMY, small L, 
no L2, boundary effect

Full =  
numerical solution of  

Zakharov path integral  
= ‘best we know’

GLV N=1 
Too much radiation  
at large L 
(no interference  
between scatt centers)

H.O = ASW/BDMPS like (harmonic oscillator) 
Too little radiation at small L 

(ignores ‘hard tail’ of scatt potential)

E = 16 GeV 
k = 3 GeV 
T = 200 MeV

Agreement of medium density for  !
AMY, GLV/CUJET fits is a coincidence!

Multiple soft tends to give smallest E-loss, !
but may be most accurate?
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Multiple gluon emission — Poisson ansatz

Poisson convolution example

ω
ω
d

d
dINgluon ∫=

gluonNn

gluon eN
n

nP −
=
!
1)(

Average number of gluons:

Poisson fluctuations:

Total probability:

(assumed)

Main other approach: build into DGLAP (used for HT)
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Outgoing quark spectra
Same temperature: T = 300 MeV

@Same T: suppression AMY > OE > ASW-MS
Note importance of P0
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Energy loss formalisms

!
Plenty of room for interesting and relevant theory work!

• Large differences between formalisms understood 
– Large angle cut-off 
– Length dependence (interference effects) 

• Mostly (?) ‘technical’ issues; can be overcome 
– Use path-integral formalism 
– Monte Carlo: exact E, p conservation 

• Full 2→3 NLO matrix elements 
• Include interference

Current progress on: 
• Interference in multiple gluon emission: ‘antenna radiation’ 
• Some work on non-eikonal propagation 
• Monte-Carlo approaches for E, p conservation  

(JEWEL, q-PYTHIA, YaJEM, MARTINI)



MC vs analytical approaches
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Analytical approaches:"
!

Energy loss of leading parting + fragmentation in vacuum!
- radiated gluons are not tracked

)/()( , jethadrT
jetshadrT

EpDEP
dE
dN

dp
dN

⊗Δ⊗=

large Q2 Q ~ mH ~ ΛQCDµF

High-energy !
parton 

(from hard 
scattering)

H
adrons

Monte Carlo parton shower:

Mapping to DGLAP evolution

All partons tracked  
(except ‘soft’ medium partons)

Implement medium-enhanced  
splitting everywhere in shower

JEWEL, MARTINI,  
PYQUEN, q-PYTHIA, 

YAJeM
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JEWEL: RAA at LHC

JEWEL energy loss model agrees with measurements 
(tuned at RHIC, LHC ‘parameter-free’)

JEWEL: Monte Carlo event generator with radiative+collisional energy loss 
- Modified showers with MC-LPM implementation 
- Geometry: expanding Woods-Saxon density 
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Effects in RAA

• Parton pT spectra 
– Less steep at LHC ! less suppression 
– Steepness decreases with pT: RAA rises 

• Quark vs gluon jets 
– More gluon jets at LHC ! more suppression 
– More quark jets at high pT: RAA rises 

• Medium density (profile) 
– Larger density at LHC ! more suppression 

(profile similar?) 
– Path length dependence of energy loss 

• Parton energy dependence 
– Expect slow (log) increase of ΔE with E ! RAA rises with pT 

– Running of αS (A Buzzatti@QM2012) ? 

• Energy loss distribution 
– Expect broad distribution P(ΔE); kinematic bounds important 

‘Known’, 
external 

input

Energy loss  
theory

Determine/ 
constrain from 
measurements

Use different observables to disentangle effects contributions 



Experimental ‘tests’ of energy loss theory

• Path length dependence!
• In- out of plane!
• Inclusive vs recoil!

• Heavy vs light quarks!
• Quarks vs gluons!

• Some ideas, but no clear experimental  
handle identified!

• Distribution of radiated energy!
• Fragment distributions in jets
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Often not possible to look for effects in isolation: !
most observables combine several aspects

All related to  
mechanism of energy loss:!

collisional: L !
radiative: L2, !
strong coupling: L3, q/g different
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Path length dependence
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Geometry

Density profile

Profile at τ ~ τform known

Density along parton path

Longitudinal expansion  
dilutes medium 
⇒ Important effect

Most models take space-time evolution into account
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Path length I: centrality dependence

Modified frag: nucl-th/0701045 - H.Zhang, J.F. Owens, E. Wang, X.N. 
Wang

6 < pT trig < 10 GeV

Away-side suppressionRAA: inclusive suppression

B. Sahlmüller, QM08

O. Catu, QM2008

Quantitative constraints difficult: 
- Large experimental uncertainties for peripheral (also for theory?) 
- Some freedom in centrality dependence for theory (extra parameter?)

Comparing Cu+Cu and Au+Au
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RAA vs ϕ and elastic eloss
T. R

enk, P
R

C
76, 064905, J. A

uvinen et al, P
R

C
82, 051901

Elastic E-loss gives 
small v2

Data require L2 or  
stronger path length  

dependence

However, also quite sensitive to medium density evolution

In Plane

Out of Plane
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Modelling azimuthal dependence
A. Majumder, PRC75, 021901

RAA

pT (GeV) pT (GeV)

RAA

RAA vs reaction plane sensitive to geometry model
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Path length dependence: RAA vs ϕ
PHENIX, arXiv:1208.2254

In Plane

Out of Plane

Suppression depends on angle, path length
Not so easy to model: calculations give different results



Reaction plane dependence at LHC: High-pT v2
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Model: B. Betz, M. Gyulassy, arXiv:1201.0281	
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Reasonable agreement between calculation  
and data for pT > 10 GeV!
(NB: simplified geometry, E-loss; 
 paper claims scale-dependence of 𝛼s main effect)



A unexpected angle on path length 
dependence: di-hadron correlations
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Dihadron correlations

associated
Δϕ

trigger

8 < pT
trig < 15 GeV

pT
assoc > 3 GeV

Use di-hadron correlations to probe the jet-structure in p+p, d+Au

Near side Away side

and Au+Au

Combinatorial 
background
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p
T assoc > 3 G

eV
p

T assoc > 6 G
eV

d+Au Au+Au 20-40% Au+Au 0-5%

Suppression of away-side yield in Au+Au collisions: energy loss

High-pT hadron production in Au+Au dominated by (di-)jet fragmentation

Di-hadrons at high-pT: recoil suppression
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Dihadron yield suppression

Away-side: Suppressed by factor 4-5  
⇒ large energy loss

Near side Away side

STAR PRL 95, 152301

8 < pT,trig < 15 GeV

Yield of additional 
particles in the jet

Yield in balancing  
jet,  after energy loss

Near side: No modification  
⇒ Fragmentation outside medium?

Near side 
associated

trigger

Away side associated

trigger
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Path length II: ‘surface bias’
Near side trigger,  

biases to small E-loss

Away-side large L

Away-side (recoil) suppression IAA samples longer path-lengths  
than inclusives RAA

NB: other effects play a role: quark/gluon composition, spectral shape (less steep for recoil) 
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Di-hadron modeling
T. R

enk, P
R

C
, arX

iv:1106.1740

L2 (ASW) fits data 
L3 (AdS) slightly below

Modified shower  
generates increase at low zT

L (YaJEM): too little suppresion 
L2 (YaJEM-D) slightly above

Model ‘calibrated’ on single hadron RAA
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Di-hadrons and single hadrons at LHC

Need simultaneous comparison to  
several measurements  

to constrain geometry and E-loss

Here: RAA and IAA

Three models: 
ASW: radiative energy loss 
YaJEM: medium-induced virtuality 
YaJEM-D: YaJEM with L-dependent  
                 virtuality cut-off (induces L2)



Summary

• p+Pb at LHC: some cold nuclear matter effects observed!
• Effects of nPDFs generally small, but detectable!
• RpPb = 1, significant uncertainties at high pT!

• + flow-like double ridge; not covered here!
• Path length dependence of energy loss!

• Azimuthal dependence of jet quenching described by radiative 
energy loss ‘L2’ dependence!
• Significant uncertainties due exact geometry!

• Recoil measurements also prefer radiative energy loss 
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Extra slides



Slide from: K. Zapp, QM2011, Annecy



Slide from: K. Zapp, QM2011, Annecy
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In-medium showers: energy loss MC

High-energy !
parton 

(from hard scattering)

H
adrons

Theory calculations on previous slides: ‘factorised’ approach, P(ΔE) FF

Alternative (more realistic):  
in-medium shower: every radiation is affected by the medium 

(N.B.: coherence effects may be more complicated; see Carlos’ lectures)

Implemented in MC codes: JEWEL, YaJEM
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Npart scaling?

PQM - Loizides – private 
communication

Geometry (thickness, area) of  
central Cu+Cu similar to peripheral Au+Au
Cannot disentangle density vs path length


