Lecture 2: p+Pb, energy loss formalisms, more differential results

Marco van Leeuwen, Nikhef and Utrecht University

JET School, UC Davis, 19-21 June 2014

A few selected results for p+Pb at LHC

NB: no time to cover everything; mainly pointers to interesting results, see QM summary talks for more details

Parton density distribution

pp, low Q2: valence structure

Nuclei: ratio to pp

Hadron R_{pPb} at LHC

pp reference at 5.02 TeV

No pp measurements at 5.02 TeV available All experiments use interpolations between 2.76 and 7 TeV

Cronin effect at LHC

Cronin effect:

 R_{pPb} shows enhancement at intermediate p_T for protons, Ξ No large effect for π , K, Φ

Interpretation/mechanism unclear: why does it depend on hadron type/mass? Can it be flow-like?

Parton kinematics and x ranges

$$
x_2 = \frac{p_T}{\sqrt{s}} (e^{-\eta_3} + e^{-\eta_4})
$$

LHC probes lower x than RHIC Midrapidity at $LHC \sim$ forward rap at RHIC

Varying *x* in p+Pb: di-jets

NB: asymmetric beam energies: mid-rapidity is at η~0.4

Shift of distribution to larger η agrees with nPDF expectation

Di-jet eta in event activity bins

Non-trivial correlation with forward event activity: di-jet moves away from forward activity

Effect also depends on p_T

Standard tool: multiplicity binning

Use geometrical model (Glauber) to calculate N_{coll}

$$
R_{pPb} = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{pPb} / dp_{T}}{dN_{pp} / dp_{T}}
$$

 N_{coll} fluctuations within the same centrality class are large!

 $\rm N_{\rm{Coll}}$

p+Pb centrality II

individual NN collisions

Forward+backward multiplicity

 $ln < 0.3$

10

 $Q_{\rm peb} = dN^{e^{i\theta}b}/dp_{\gamma}/(\Upsilon_{\rm ph}^{\rm Glusov} d\sigma_{\rm ph}/dp_{\gamma})$

2

 Ω

'n

12

14

16

18

common syst. error
cont 60-60% normalisation error

p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

Biases affect estimation of *N*_{coll}, value of '*R*_{pPb}'

Forward multiplicity

 $ln < 0.3$

10

12

22

p-Pb at \mathbf{s}_{NN} = 5.02 TeV

14 16

18

PRELIMINARY

22

20 p_T (GeV/c)

20

 p_{r} (GeV/c)

PRELIMINARY

Back to A+A and parton energy loss

Recap: transport coefficient study

 \hat{q} / T^3 larger at RHIC than LHC: running of α_s ? Or: limited validity of models?

Recap: earlier study

$$
\hat{q} = \int_0^{q_{max}} dq_T^2 q_T^2 \frac{d\sigma}{dq_T}
$$

ASW: $\hat{q} = 10 - 20 \text{ GeV}^2/\text{fm}$ HT: AMY: $\hat{q} = 2.3 - 4.5 \text{ GeV}^2/\text{fm}$ $\hat{q} \approx 4 \text{ GeV}^2/\text{fm}$

Large uncertainty in absolute medium density

ASW requires much larger transport coefficient

One aspect: scattering potential/momentum transfer; see recent work by Majumder, Laine, Rothkopf on lattice Bass et al, PRC79, 024901

et al, PRC79, 024901

Bass

PHENIX, arXiv:1208.2254

PHENIX, arXiv:1208.2254

Medium-induced radiation

λ

Landau-Pomeranchuk-Migdal effect Formation time important

If $\lambda < \tau_f$, multiple scatterings add coherently

 $\Delta E_{med} \sim \alpha_{\scriptstyle S} \hat{q} L^2$

Four formalisms

Multiple gluon emission

• **Hard Thermal Loops (AMY)**

- Dynamical (HTL) medium
- Single gluon spectrum: BDMPS-Z like path integral
- No vacuum radiation
- **Multiple soft scattering (BDMPS-Z, ASW-MS)**
	- Static scattering centers
	- Gaussian approximation for momentum kicks
	- Full LPM interference and vacuum radiation

• **Opacity expansion ((D)GLV, ASW-SH)**

- Static scattering centers, Yukawa potential
- Expansion in opacity L/λ
	- (N=1, interference between two centers default)
- Interference with vacuum radiation

• **Higher Twist (Guo, Wang, Majumder)**

- Medium characterised by higher twist matrix elements
- Radiation kernel similar to GLV
- Vacuum radiation in DGLAP evolution

Fokker-Planck rate equations

Poisson ansatz (independent emission)

> DGLAP evolution

All formalisms can be related to the same BDMPS-Z path integral formalism; different approximations used

See also: arXiv:1106.1106

The Brick Problem

TECHQM: Theory-Experiment Collaboration on Hot Quark Matter

arXiv:1106.1106

Compare outgoing gluon, quark distributions

- Same density - Same suppression Two types of comparison:

and interpret/understand the differences

Large angle radiation

Calculated gluon spectrum extends to large k_⊥ at small k Outside kinematic limits

GLV, ASW, HT cut this off 'by hand'

Effect of large angle radiation

Different large angle cut-offs: $k_T < \omega = x_F E$ $k_T < \omega = 2 x_+ E$

Factor ~2 uncertainty from large-angle cut-off

Multiple soft scattering: BDMPS, AMY

L=2 fm Single gluon spectra L=5 fm Single gluon spectra

Single gluon spectra

Same temperature

@Same temperature: AMY > OE > ASW-MS

Size of difference depends on L, but hierarchy stays

L-dependence; regions of validity?

Multiple gluon emission — Poisson ansatz

Main other approach: build into DGLAP (used for HT)

Outgoing quark spectra

Same temperature: *T* = 300 MeV

@Same *T*: suppression AMY > OE > ASW-MS

Note importance of P_0

Energy loss formalisms

- Large differences between formalisms understood
	- Large angle cut-off
	- Length dependence (interference effects)
- Mostly (?) 'technical' issues; can be overcome
	- Use path-integral formalism
	- Monte Carlo: exact *E*, *p* conservation
		- Full 2→3 NLO matrix elements
		- Include interference

Plenty of room for interesting and relevant theory work!

Current progress on:

- Interference in multiple gluon emission: 'antenna radiation'
- Some work on non-eikonal propagation
- Monte-Carlo approaches for *E*, *p* conservation (JEWEL, q-PYTHIA, YaJEM, MARTINI)

MC vs analytical approaches

Analytical approaches:

YAJeM

$$
\left. \frac{dN}{dp_T} \right|_{hadr} = \left. \frac{dN}{dE} \right|_{jets} \quad \otimes \quad P(\Delta E) \quad \otimes \quad D(p_{T, hadr} / E_{jet})
$$

Energy loss of leading parting + fragmentation in vacuum - radiated gluons are not tracked

Monte Carlo parton shower: poo All partons tracked **High-energy** (except 'soft' medium partons) **parton** \mathcal{Q} (from hard $\mathcal{Q}_\mathcal{Q}_\mathcal{C}$ Implement medium-enhanced scattering) splitting everywhere in shower JEWEL, MARTINI, large Q^2 μ_F $Q \sim m_H \sim \Lambda_{QCD}$ PYQUEN, q-PYTHIA,

Mapping to DGLAP evolution

Hadrons

Hadrons

JEWEL: R_{AA} at LHC

JEWEL: Monte Carlo event generator with radiative+collisional energy loss

- Modified showers with MC-LPM implementation
- Geometry: expanding Woods-Saxon density

JEWEL energy loss model agrees with measurements (tuned at RHIC, LHC 'parameter-free')

Effects in *RAA*

Parton p_T spectra

- Less steep at LHC \rightarrow less suppression
- Steepness decreases with p_T : R_{AA} rises

• **Quark vs gluon jets**

- More gluon jets at LHC \rightarrow more suppression
- More quark jets at high p_T : R_{AA} rises

• **Medium density (profile)**

- Larger density at LHC \rightarrow more suppression (profile similar?)
- Path length dependence of energy loss

• **Parton energy dependence**

- Expect slow (log) increase of ΔE with $E \rightarrow R_{AA}$ rises with p_T
- Running of $\alpha_{\rm s}$ (A Buzzatti@QM2012) ?
- **Energy loss distribution**
	- Expect broad distribution $P(\Delta E)$; kinematic bounds important

'Known', external input Energy loss theory Determine/ constrain from measurements

Use different observables to disentangle effects contributions

Experimental 'tests' of energy loss theory

Often not possible to look for effects in isolation: most observables combine several aspects

Path length dependence

Geometry

Most models take space-time evolution into account

Path length I: centrality dependence

Comparing Cu+Cu and Au+Au

R_{AA} : inclusive suppression $\qquad \qquad$ Away-side suppression

Quantitative constraints difficult:

- Large experimental uncertainties for peripheral (also for theory?)
- Some freedom in centrality dependence for theory (extra parameter?)

RAA vs ϕ and elastic eloss

However, also quite sensitive to medium density evolution

Modelling azimuthal dependence

 R_{AA} vs reaction plane sensitive to geometry model

Path length dependence: R_{AA} vs φ

PHENIX, arXiv:1208.2254

Suppression depends on angle, path length Not so easy to model: calculations give different results

Reaction plane dependence at LHC: High-p_T v_2

A unexpected angle on path length dependence: di-hadron correlations

Dihadron correlations

Use di-hadron correlations to probe the jet-structure in p+p, d+Au and Au+Au

Di-hadrons at high- p_T : recoil suppression

High- p_T hadron production in Au+Au dominated by (di-)jet fragmentation

Suppression of away-side yield in Au+Au collisions: energy loss

Dihadron yield suppression

Near side: No modification ⇒ Fragmentation outside medium? Away-side: Suppressed by factor 4-5 ⇒ large energy loss

Path length II: 'surface bias'

Near side trigger, biases to small E-loss

Away-side large L

Away-side (recoil) suppression I_{AA} samples longer path-lengths than inclusives R_{AA}

NB: other effects play a role: quark/gluon composition, spectral shape (less steep for recoil)

Di-hadron modeling

Model 'calibrated' on single hadron R_{AA}

L2 (ASW) fits data *L3* (AdS) slightly below

Modified shower generates increase at low z_T *L* (YaJEM): too little suppresion *L2* (YaJEM-D) slightly above

Di-hadrons and single hadrons at LHC

Summary

- p+Pb at LHC: some cold nuclear matter effects observed
	- Effects of nPDFs generally small, but detectable
	- $R_{pPb} = 1$, significant uncertainties at high p_T
	- \cdot + flow-like double ridge; not covered here
- Path length dependence of energy loss
	- Azimuthal dependence of jet quenching described by radiative energy loss '*L*2' dependence
		- Significant uncertainties due exact geometry
	- Recoil measurements also prefer radiative energy loss

Extra slides

Established MC models

- \blacktriangleright HIJING:
	- \triangleright medium induced parton splitting process
	- \triangleright complete HI events

Wang, Gyulassy, Phys. Rev. D 44 (1991) 3501

Deng, Wang, Xu, arXiv:1008.1841

\blacktriangleright HYDJET++/PYQUEN:

- ► gluon radiation sampled from BDMPS spectrum
- \blacktriangleright elastic scattering
- complete HI events

Lokhtin, Snigirev, Eur. Phys. J. C 45 (2006) 211

Lokhtin et al., Comput. Phys. Commun. 180 (2009) 779

\triangleright JEWEL:

 \triangleright unified ME+PS description for all emissions

work in progress

- \blacktriangleright elastic scattering
- ighthroporporal single single simulates only parton shower $+$ hadronisation

Zapp, Ingelman, Rathsman, Stachel, Wiedemann, Eur. Phys. J. C 60 (2009) 617

Zapp, Stachel, Wiedemann, Phys. Rev. Lett. 103 (2009) 152302

Slide from: K. Zapp, QM2011, Annecy

Monte Carlo Tools for Jet Quenching

Korinna Zapp

Why jets and why MC?

Jets in $p+p$

Jets in A+A

Non-eikonal kinematics

Multiple gluon emission & **LPM-effect**

 k_{\perp} -broadening

Recoils, medium modelling, background Hadronisation

Conclusions

Established MC models

- \triangleright Q-PYTHIA/Q-HERWIG:
	- ► modified splitting function derived from BDMPS
	- \triangleright simulates only jets

Armesto, Cunqueiro, Salgado, Eur. Phys. J. C 63 (2009) 679

Armesto, Corcella, Cunqueiro, Salgado, JHEP 0911 (2009) 122

\triangleright YaJEM:

- \blacktriangleright medium interactions transfer virtuality to partons $(\rightarrow$ radiative energy loss)
- \blacktriangleright and degrade their energy
- \triangleright simulates only jets

Renk, Phys. Rev. C 78 (2008) 034908

Renk, Phys. Rev. C 79 (2009) 054906

\triangleright MARTINI:

- \triangleright based on AMY transition rates
- \blacktriangleright + elastic scattering transition rate
- \triangleright simulates only jets

Schenke, Gale, Jeon, Phys. Rev. C 80 (2009) 054913

Slide from: K. Zapp, QM2011, Annecy

Monte Carlo Tools for Jet Quenching

Korinna Zapp

Why jets and why MC?

Jets in $p+p$

Jets in A+A

Non-eikonal kinematics

Multiple gluon emission & **LPM-effect**

 k_{\perp} -broadening

Recoils, medium modelling, background Hadronisation

Conclusions

In-medium showers: energy loss MC

Theory calculations on previous slides: 'factorised' approach, P(ΔE) FF

Alternative (more realistic):

in-medium shower: every radiation is affected by the medium

(N.B.: coherence effects may be more complicated; see Carlos' lectures)

Implemented in MC codes: JEWEL, YaJEM

N_{part} scaling?

Geometry (thickness, area) of central Cu+Cu similar to peripheral Au+Au Cannot disentangle density vs path length