Bulk Properties at RHIC

Roy A. Lacey Stony Brook University

I. Introduction II. What is meant by the bulk? III. The role of the bulk in reaction studies? IV. Selected studies of bulk properties and what we learn from them

Quantitative study of the QCD phase diagram is a central current focus of our field

A Known known Spectacular achievement: Validation of the crossover transition leading to the QGP Necessary requirement for CEP A Known known
 \triangleright Spectacular achievement:

Validation of the crossover

transition leading to the QGP
 \rightarrow Necessary requirement for CEP

<u>m unknowns</u>

cation of the critical End point (CEP)?

cation of phase coexis \rightarrow Spectacular achieve
Validation of the cross
transition leading to t
 \rightarrow Necessary requiremer
wn unknowns
ocation of the critical Encontraction
ocation of the critical Encontractive
detailed properties of eac
 $\frac{y}{s$ A Known known

> Spectacular achievement

Validation of the crossove

transition leading to the (
 \rightarrow Necessary requirement for

wurn unknowns

ocation of the critical End po

ocation of the critical End po

ocation of

Known unknowns

 Location of the critical End point (CEP)? Location of phase coexistence regions? Detailed properties of each phase?

Measurements which span a broad range of the (T, μ_B) *-plane are essential* for a mapping of he phase diagram. Bulk properties play an essential role

What is the bulk?

Phenomenological definition:

What is the bulk?

Thenomenological definition:

We can distinguish between *a soft*

part (exponential shape) and a

hard part (power-law shape) of the

measured p_T spectra
 $\sum_{i=1}^{\infty} 10^{-i}$
 $\sum_{i=1}^{\infty} 10^{-i}$
 part (exponential shape) and a *hard part* (power-law shape) of the measured p_T spectra

~98% of all particles are produced with *p***^T < 2 GeV/***c***.**

The role of bulk properties

pre-equilibrium

Constraints for Initial state geometry and fluctuations (flow measurements)

Constraints for QGP properties, degrees of freedom and CEP (flow measurements)

QGP and

Constraints for Local thermal Equilibrium (particle yields)

hadronization

Constraints for Space-time dynamics EOS and CEP (HBT measurements)

hadronic phase and freeze-o

Bulk properties also play a crucial role for control variables in studies involving hard and soft processes

4 Roy A. Lacey, Stony Brook University, JC Summer School, June 19-21, 2014

Bulk particles are used to calibrate collision centrality and the associated initial-state geometry

⁵ Roy A. Lacey, Stony Brook University, JC Summer School, June 19-21, 2014

Geometric quantities

- *Geometric fluctuations included*
- *Geometric quantities constrained by multiplicity density.*

Event plane

Bulk particles are used to determine the event plane

$$
\mathbf{Q}_n = \sum_{i=1}^N w_n(j) e^{in\phi_j} = |\mathbf{Q}_n| e^{in\Phi_n}
$$

$$
Q_n \cos(n\Psi_n) = X_n = \sum_i w_i \cos(n\phi_i),
$$

$$
Q_n \sin(n\Psi_n) = Y_n = \sum_i w_i \sin(n\phi_i),
$$

$$
\Psi_n = \left(\tan^{-1} \frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)}\right) / n
$$

- For a given event and a given harmonic n.
	- N = Particle multiplicity
	- φ_i = particle azimuthal angles
	- w_i = weight for particle i

There are well established correction procedures for event plane dispersion

Azimuthal distribution

A variety of variables are measured relative to the event plane

$$
|v_n = \langle \cos(2n[-\Psi_n]) \rangle
$$

Roy A. Lacey, Stony Brook University, JC Summer School, June 19-21, 2014

8

Bulk particles are used to estimate the energy density

 $\left| \frac{P}{F-n} \right|$ $(E-p_L)$

2 $(E-p_L)$

 $(E + p_L)$

 $\left| \tan \frac{\pi}{2} \right|$ $\begin{bmatrix} 2 \end{bmatrix}$

 $\left| \begin{array}{c} \end{array} \right|$

 $=-\ln\left|\tan\left(\frac{\Gamma}{2}\right)\right|$

 \vert = - III \vert tail \vert $\frac{1}{2}$ \vert \vert $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

 p_L (2)

L J L \setminus ^Z

 $L \Big|$ $\Big|$ $\Big|$

 $\left[\begin{array}{cc} \left[\begin{array}{cc} \left[\begin{array}{c} \left[\end{array} \right] & \left[\begin{array}{c} \left[\begin{array}{c} \left[\end{array} \right] & \left[\begin{array}{c} \left[\end$

 p_L \vert \vert \vert \vert \vert \vert \vert

 $1_{\text{ln}}(E+p_L)$

 $\left| \frac{L}{2} \right|$ (2)

 \mathbf{I} \int

L

L

 \mathbf{I} \Box

 \mathbf{H} **ノ」**

 $\left| \right|$

 \mathbf{I}

 $-p_L$)

 $E - p_L$

 $+ p_L$)

 $E + p_L$

 $\sqrt{2}$

Hadronization

The success of **thermal models** describing **bulk hadron yields** supports the idea of matter in local thermal equilibrium?

A current strategy for navigating the (μ_B, T) *-plane*

\triangleright LHC \rightarrow access to high T and small μ_B

 RHIC access to different systems and a broad domain of the (μ_B, T) *-plane RHIC_{BES}* to LHC \rightarrow ~360 $\sqrt{s_{NN}}$ increase

 LHC + BES access to an even broader domain of the (μ_B, T) *-plane*

At the CEP or close to it, anomalies in the dynamic properties of the medium can drive abrupt changes in transport coefficients

Anisotropic flow (vⁿ) measurements are an invaluable probe

Possible signals for the CEP Collapse of directed flow

H. Stoecker, NPA 750, 121 (2005)

In the vicinity of a phase transition or the CEP, the sound speed is expected to soften considerably.

In the vicinity of a phase transition or the CEP anomalies in the space-time dynamics can enhance the time-like component of emissions.

HBT measurements are an invaluable probe

 $G(\mathbf{q}) \cong \exp(-R_{\rm side}^2 q_{\rm side}^2 - R_{\rm out}^2 q_{\rm out}^2 - R_{\rm long}^2 q_{\rm long}^2)$

Fits to the correlation functions \rightarrow HBT radii ($R_{\textit{out}\textit{v}}$ $R_{\textit{side}\textit{v}}$ $R_{\textit{long}}$) as a function of centrality, $m_{\textit{D}}$ etc

Vⁿ measurements

Extensive set of vⁿ measurements at RHIC and the LHC

Roy A. Lacey, Stony Brook University, JC Summer School, June 19-21, 2014 16

Anisotropy Measurements

arXiv:1305.3341

 Extensive set of measurements now span a broad range of beam energies (*T*, μ_B).

Essential Questions

I. Can the wealth of data be understood in a consistent framework?

YES!

II. If it can, what new insight/s are we afforded?

- *Do we see indications for the phase transition / CEP?*
- *I. Expansion dynamics is pressure driven and is therefore acoustic!*
	- *This acoustic property leads to several testable scaling predictions for anisotropic flow and HBT*
	- *– with implications*

This constitutes an important recent development

Each of these scaling expectations can been validated /s , '

20 Roy A. Lacey, Stony Brook University, JC Summer School, June 19-21, 2014

Scaling properties of HBT

Characteristic a

 \triangleright **R** and m_T scaling of the full LHC data set \triangleright The centrality and m_T dependent data scale to a *single curve for each radii.*

Acoustic Scaling of HBT Radii

Exquisitely demonstrated for asymmetric systems similar reaction dynamics

Scaling of HBT Radii

mT Scaling of HBT Radii

▶ PHENIX and STAR 2 consistent arxiv:1403.4972

- all radii linear $R_i = a + b/\sqrt{m_T}$ $\qquad \underbrace{\widehat{\epsilon}}_{\underline{\alpha}}$
- Useful to interpolate 2 to common m_T

dependence of HBT signals

These characteristic patterns signal an important change in the reaction dynamics CEP? Phase transition?

Transport properties -η/s

Reminder Subsequently

the magnitude of /s at RHIC

$$
4 \quad /s \sim 1-2
$$

- *T dependence of /s?*
- *μ^B dependence of /s?*
- *Possible signal for CEP?*

Status Quo A major uncertainty in the extraction of /s stems from Incomplete knowledge of the Initial-state eccentricity model

ⁿ – /s interplay?

A major uncertainty in the extraction of /s stems from Incomplete knowledge of the Initial eccentricity?

ⁿ – /s interplay?

η/s is a property of the medium and should not depend on initial geometry! The dependence on initial geometry is NOT an uncertainty;

New methodology and constraints required We use acoustic scaling

Roy A. Lacey, Stony Brook University, JC Summer School, June 19-21, 2014 29

 Characteristic n² viscous damping validated Characteristic *1/(p^T) dependence of extracted values validated Constraint for /s and f*

> *30 Roy A. Lacey, Stony Brook University, JC Summer School, June 19-21, 2014*

Scaling properties of flow

- Viscous Hydrodynamics

 Characteristic a viscous hydrodynamics

$\sqrt{\beta}$ 'shows clear sensitivity to \sqrt{s} *Viscous hydrodynamics can be used for calibration*

 \checkmark Characteristic $1/R$ viscous damping validated with n^2 **dependence at RHIC & the LHC** *A further constraint for /s*

Crucial constraint for initial-geometry models

Roy A. Lacey, Stony Brook University, JC Summer School, June 19-21, 2014

Shape-engineered events

Scaling properties of flow

Acoustic Scaling of shape-engineered events

Characteristic $1/R$ viscous damping validated **for different event shapes at the same centrality** *A further constraint for initial fluctuations model and /s*

> *36 Roy A. Lacey, Stony Brook University, JC Summer School, June 19-21, 2014*

Anisotropy Measurements

arXiv:1305.3341

 An extensive set of measurements now span a broad range of beam energies (T, μ_B *).*

40 Roy A. Lacey, Stony Brook University, QM2014

 10

Epilogue

Acoustic scaling of anisotropic flow and HBT radii *lend profound mechanistic insights, as well as new constraints for mapping the QCD phase diagram*

What do we learn?

The expansion dynamics is acoustic – "as it should be"

- *Validates expected acoustic scaling of flow and HBT radii constraints for* **4** */s & viable initial-state models*
	- *√* 4 */s* for RHIC plasma \sim 1.3 \pm 0.2 \sim my 2006 estimate
√ 4 */s* for LHC plasma \sim 2.2 \pm 0.2
	-
	- **⁴** */s for LHC plasma ~ 2*. [±] . *Extraction insensitive to initial geometry model*

Characteristic dependence of

viscous coefficient " and $v1$, as well as " c_s " and $\Delta \tau$ on $\sqrt{s_{NN}}$ *give new constraints which could be an indication for reaction trajectories in close proximity to the CEP?*

End

Anisotropy Measurements

High precision double differential measurements obtained for identified particle species at RHIC and the LHC.

Acoustic Scaling – Ratios

vⁿ PID scaling

