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Selected references on QCD
n QCD and Collider Physics: Ellis-Stirling-Webber
n Foundations of Perturbative QCD: J. Collins
n Applications of Perturbative QCD: R. Field
n Quantum Chromodynamics: Greiner-Schramm-Stein

n CTEQ collaboration: http://www.phys.psu.edu/~cteq
n QCD Resource Letter: arXiv:1002.5032 by Kronfeld-Quigg
n Particle Data Group: http://pdg.lbl.gov
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n pQCD factorization: collinear vs TMD factorization

n Parton multiple scattering is very important in understanding 
nontrivial nuclear dependence
n Can be described in a high-twist expansion formalism when “kt” is reasonably 

small
n Have to recover the full “kt” dependence (resummed to Wilson line) when “kt” 

is the main degree of freedom (e.g., in small-x region)

n Factorization at twist-4 has been verified up to one-loop order
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Recap - lecture 2: QCD foundation and multiple scattering
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Why Jets?

n In QCD Lagrangian quarks and gluons are the degrees of freedom, so 
pQCD calculation deals with quarks and gluons only. However, quarks 
and gluons are never observed into detectors

n QCD final states involve highly collimated sprays of energetic hadrons, 
a.k.a. jets

n Jets are the footprints of partons in the detector
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Footprints of partons

n Accelerated quarks always radiate gluons

n The structure of the jet reflects the properties of underlying QCD 
radiation
n High probability of emission of soft (z→1) and collinear (θ→0) gluons
n Extra hard gluon emission ~ αs(E) (strong coupling constant)

n Asymptotic freedom: αs(E)→0 for E→∞, thus the higher the energy 
the more collimated the jets

n Jet cross sections are computable in perturbative QCD using the 
degrees of freedom of quarks and gluons. Even though experimentally 
reconstructed jets through the hadrons, experiments and theory 
should be the same
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How to define a jet: original one

n Sterman-Weinberg jets
n Only defined in e+e- process
n Cones of opening angle δ containing all but a fraction ε of the total energy in 

the event
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Modern jet algorithms

n Cone algorithms
n Successive recombination algorithms
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Cone algorithms

n Particles in cone of size R, defined in angular space (η,ϕ)
n The jet is defined by the particles inside a circle in the plane formed by rapidity 

and azimuthal angle, such that the sum of the four momenta of these particles 
points in the direction of its center

n Particle j is inside the cone iff

n The jet axis

n Jet is defined a “stable” cone if jet axis is coincident with the cone centroid 
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Successive recombination algorithms: kt-type

n Define a distance measure between particles j and k, also w.r.t. the 
beam

n Repeat above procedure until no particles are left
n p=1, kt-algorithm; p=-1 anti-kt algorithm

9

dij ≡ min(k2pTi
, k2pTj

)
R2

ij

R2 R2
ij ≡ (ηi − ηj)

2 + (φi − φj)
2

diB ≡ k2pTi



Jun 21, 2014 Zhongbo Kang, LANL

Leading light hadron suppression

n Jet quenching for light hadron production in both RHIC and LHC

n Light hadron comes from the fragmentation of light (massless) quarks 
and gluons
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What about heavy quark?

n Quark mass effect in radiated gluon radiation: the so-called dead-cone 
effect which leads to less radiative energy loss for heavy quarks
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B-jets in p+p collisions

n How to define a jet: need jet finding algorithms
n kt algorithm, anti-kt algorithm, cone algorithm, ...

n Define b-jet
n First find a jet. Next, with the jet radius parameter look for a B-hadron (b-

quark for theory). Call it a b-jet ... Or maybe require the b-quark to be 
leading ... Or maybe some more creative substructure (“single b-quark jet” at 
Fermilab)

n Note that the parent parton might have nothing to do with a b-quark
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B-jets in p+p collisions

n No readily available NLO calculation for b-jet production (MC@NLO ...)
n PYTHIA 8 (LO+LL parton shower)
n SlowJet program with an anti-kt algorithm versus FastJet shown to 

give the same result
n Good description to the b-jet cross section as a function of pt and 

rapidity y
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Hard partonic structure for b-jets

n Medium modification for b-jets in heavy ion collisions comes from 
both initial-state and final-state effects
n Initial-state: cold nuclear matter (CNM) effects 
n Final-state: parton energy loss ⇒ have to understand the hard partonic 

structure for b-jets (whether light quark, gluon, or b quark)
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b(b̄) → b(b̄)
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Hard partonic structure for b-jets
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Huang-Kang-Vitev, 1306.0909, PLB, 2013n Simulation in Pythia

n             : fraction of              , i.e., hard process generates gluons, which then 
split into heavy quark pair as contained in b-jets (initiated by gluon)

n             : fraction of        
n             : fraction of 

n A very small fraction of b-jets originate from a b-quark produced in 
the hard scattering
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B-jet cross section calculation in heavy ion collisions

n Only a fraction of lost energy (medium induced parton shower) falls 
inside the cone, which can be computed as follows

n (1 - f) is lost

n In such a formalism, adjust        such that 

n The right-hand side is simulated independently

n In order to get the jet with same energy, one has to start with a 
“higher” energy jet before the quenching
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B-jet cross section calculation in heavy ion collisions

n Eventually the b-jet cross section is calculated as the following

n P(ε): the probability to lose energy (with a fraction of ε) due to 
multiple gluon emission
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B-jet result at LHC 2.76 TeV Pb+Pb collisions

n General trend: smaller R leads to 
larger suppression, consistent with 
the intuition

n Radiative energy loss is larger for 
small cone size while collisional 
energy loss is less sensitive to the 
jet cone size
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Works fine

n Compared with the most recent CMS b-jet data

n b-jet at high pt is not really sensitive to the b-quark energy loss
n Could it be the same as heavy flavor meson? (q, g can fragment equally)
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Is standard “energy loss” the full story?

n Soft approximation
n Under soft approximation, the parton does not change identity, so the energy 

loss has its true meaning
n If the incoming quark loses 90% of its energy (through gluon radiation), the 

gluon has become the main content, which will fragment to the hadron

n Need full calculation contains the full “DGLAP-type” evolution (in 
medium), which can convert quark to gluon, and/or vice versa
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n DGLAP type evolution: splitting kernel in medium is derived from 
SCETG, consistent with GLV for diagonal pieces (now with off-diagonal 
piece)
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A recent study: go beyond soft approximation
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The modified fragmentation function does vary

n Difference is pronounced at large z region for modified fragmentation 
function

n The observed hadron samples a wide range of z
n In the presence of QGP, biased toward lower values of z
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Is standard “energy loss” the full story?

n Collinear approximation
n So far the above picture contains only the modification to the fragmentation 

function (modified evolution): come from the region where gluon is radiated 
collinear to the parent quark - collinear approximation?!

n A complete NLO calculation to pt spectrum of course also has to include the 
NLO hard-part function: come from the region where gluon is radiated outside 
the collinear region

23

�2T < µ2 �2T > µ2

NLO hard-partRenormalized FFs



Jun 21, 2014 Zhongbo Kang, LANL

Jet shape

n Jet shape gives the fraction of the total jet energy, 
with a jet having radius R, within radius r

n Differential jet shape

n Leading order jet gives a delta-function jet shape
n Since the single parton is the jet, so jet has no internal 

structure

n Structure only happens at next-to-leading order 
for jet cross section
n Will give leading order (first nontrivial order) jet shape
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How to compute leading order jet shape

n The probability of final-state emission from a parton of type a is given 
by

n Jet shape at LO 

n Upper limit “Z” comes from the phase space limit: the requirements 
that both partons b, c be within R of the jet axis and the opening 
angle be less than RsepR
n Potential overlapping cones: introduce an adjustable parameter Rsep, whereby 

if two partons are within an angle RsepR of each other, they are merged into 
one jet 
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Splitting functions

n Splitting functions are well-known from DGLAP equations
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LO jet shape

n LO jet shape for quark and gluon

n Jet shape in the measurement: need also the quark and gluon jet 
fractions 
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LO shape

n Quark jets are more localized than gluon jets
n There are more effects to add in: initial-state radiation (that happens 

to be inside the jet cone by chance), power corrections, ...
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Resummation and etc

n Jet shape can be well controlled in pQCD
n When r<<R, there could be large logarithms of
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Jet shape in heavy ion collisions

n In medium multiple scattering tends to broaden the jet distribution
n Naively speaking, the small r part has suppression, large r part has 

enhancement
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Summary

n Jets are certainly more powerful but also more complicated in terms 
of “analytical-type” computation

n Jet substructure hopefully could reveal more detailed dynamics about 
jet quenching, help us understand the underlying mechanism
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