Quarkonia Production in Heavy Ion Collisions

Che-Ming Ko, Texas A&M University

- In-medium properties of quarkonia
- Quarkonia production mechanisms in HIC
- Nuclear modification factor for J/ψ
- Nuclear modification factor for Y(1S)
- J/ψ elliptic flow
- Effects of initial fluctuation on bottomonia production
- Hot medium effects in p+Pb

In collaboration with Taesoo Song, Yunpeng Liu, and Kyongchol Han

Support by US National Science Foundation and Department of Energy, and The Welch Foundation

Quarkonia in QGP

 $F_1(r,T)/\sigma^{1/2}$ Free energy F for a pair of $Q\overline{Q}$ from LQCD 2.5 [Kacmareck, EJP 61, 811 (2009)] 2 1.5 Two limits of the potential: 0.75 1 V(r,T) = F0.5 -1.07 e or V(r,T) = U = F + TS1.12 e .16 e 0 $r\sigma^{1/2}$ Schroedinger equation at finite T: -0.5 1 2 5 з 4 6 1.6 2.5 J/psi binding energy $\varepsilon(T)$ 1.4 radius R(T) 1.2 AE[GeV] 1.5 R Dissociation temperature: 0.8 0.6 $\epsilon(T_D) \rightarrow 0, R(T_D) \rightarrow \infty$ 0.4 0.5 0.2 ٥ 1.6 1.8 2 2.2 For V=U (Satz et al.) 1.2 1.4 1.2 1.4 1.6 1.8 2 2 1 т/Те τл. $\chi_c(1P)$ $\psi'(2S)$ $\chi_b(1P)$ $\Upsilon(1S)$ $\Upsilon(2S)$ $\Upsilon(3S)$ $J/\psi(1S)$ $\chi_b(2P)$ state 2.101.121.76 T_d/T_c 1.16> 4.01.601.191.17

Lee, Morita, Song & Ko, PRD 89, 094015 (2014)

3

$$\Pi_{\mu\nu}(q) = i \int d^4x \, e^{iqx} \langle T[\bar{c}(x)\gamma_{\mu}c(x)\bar{c}(0)\gamma_{\nu}c(0)] \rangle.$$

 Results favor free energy as the potential between charm and anticharm quarks

Screened Cornell potential for heavy quark and antiquark in QGP

 Screened Cornell potential between charm and anticharm quarks

$$V(r,T) = \frac{\sigma}{\mu(T)} \left[1 - e^{-\mu(T)r} \right] - \frac{\alpha}{r} e^{-\mu(T)r}$$

with string tension $\sigma = 0.192 \text{ GeV}^2$ and screening mass

$$\mu(T) = \sqrt{\frac{N_c}{3} + \frac{N_f}{6}}gT$$

 Its strength is between the internal energy (U) and free energy (F) of heavy quark and antiquark from LQCD; similar to F at T_c and to U at 4T_c.

Thermal properties of charmonia

Binding energy

$$\varepsilon_0 = 2m_c + \frac{\sigma}{\mu(T)} - E$$

Charm quark mass $m_c = 1.32 \text{ GeV}$ E: eigenvalues of Cornell potential

Dissociation temperature T_D: corresponding to $\varepsilon_0=0$

For g=1.87, $T_D \sim 300$ MeV for J/ ψ and $\sim T_D = 175$ MeV for ψ ' and χ_c

Thermal properties of bottomonia

Quasiparticle model for QGP

P. Levai and U. Heinz, PRC , 1879 (1998)

Resulting EOS is similar to that from LQCD by the hot QCD collaboration, and the difference is smaller than that between the hot QCD and Wuppertal-Budapest Collaborations

Thermal decay widths of quarkonia

- Dissociation by hadrons

Song, Park & Lee, PRC 81, 034914 (10)

Thermal dissociation width

Validity of dipole approximation in J/y dissociation

Liu, Ko & Song, PRC 88, 046902 (2013)

 Dipole approximation overestimates J/ψ dissociation cross section by as large as a factor of three

Directly produced J/ψ

Song, Park & Lee, PRC 81, 034914 (10)

Number of initially produced

 $N_{J/\psi}^{AA} = \sigma_{J/\psi}^{NN} A^2 T_{AA}(\vec{b})$

- $\sigma_{J/\psi}^{NN}$: J/ ψ production cross section in NN collision; ~ 0.774 µb at $s^{1/2}$ = 200 GeV
- Overlap function

$$T_{AA}(\vec{b}) = \int d^2 \vec{s} T_A(\vec{s}) T_A(\vec{b} - \vec{s})$$

• Thickness function

$$T_A(\vec{s}) = \int_{-\infty}^{\infty} dz \rho_A(\vec{s}, z)$$

Normalized density distribution

$$\rho(r) = \frac{\rho_0}{1 + e^{(r - r_0)/c}}$$

 r_0 = 6.38 fm, c=0.535 fm for Au

- Nuclear absorption
 - Survival probability

$$S_{nucl}(\vec{b},\vec{s}) = \frac{1}{T_{AB}(\vec{b})} \int dz dz' \rho_A(\vec{s},z) \rho_B(\vec{b}-\vec{s},z')$$
$$\times \exp\left\{-(A-1)\int_z^\infty dz_A \rho_A(\vec{s},z_A)\sigma_{nuc}\right\}$$
$$\times \exp\left\{-(B-1)\int_{z'}^\infty dz_B \rho_B(\vec{s},z_B)\sigma_{nuc}\right\}$$

Regenerated J/ψ

Rate equation for J/ψ production

Charm fugacity is determined by

$$N_{c\bar{c}}^{AA} = \left[\frac{1}{2}\gamma n_o \frac{I_1(\gamma n_0 V)}{I_0(\gamma n_0 V)} + \gamma^2 n_h\right] V = \sigma_{c\bar{c}}^{NN} A^2 T_{AA}(\vec{b})$$

• $\sigma_{c\bar{c}}^{NN}$: charm production cross section in NN collision; ~ 63.7 µb at s^{1/2}= 200 GeV

- $\frac{dN_{i}}{d\tau} = -\Gamma_{i} \left(N_{i} N_{i}^{eq} \right), \quad N_{i}^{eq} = \gamma^{2} R n_{i}^{GC} V$
 - Charm relaxation factor

$$R = 1 - \exp\left\{-\int_{\tau_0}^{\tau_{QGP}} d\tau \Gamma_c(T(\tau))\right\}$$
$$\Gamma(T) = \sum_i \int \frac{d^3k}{(2\pi)^3} v_{rel}(k) n_i(k,T)$$
$$\times \sigma_i^{diss}(k,T) \left(1 - \vec{p} \cdot \vec{p}' / p^2\right)$$

as J/ψ is more likely to be formed if charm quarks are in thermal equilibrium

Approximately reproduced by non-equilibrium charm quarks from parton cascade [PRC 85, 954905 (12)]

Nonequilibrium effects on J/Ψ production

Nonequilibrium effects can be approximated by the relaxation factor

Nuclear modification factor for J/ψ

Song, Han & Ko, PRC 84, 034907 (2011)

	SPS	RHIC	LHC	LHC
				$p_T > 6.5 \text{ GeV}$
production (μb)				
$d\sigma^{pp}_{J/\psi}/dy$	0.05	0.774	4.0	
$d\sigma^{pp}_{car{c}}/dy$	5.7	119	615	
feed-down (%)				
f_{χ_c}	25	32	26.4	23.5
$f_{\psi'(2S)}$	8	9.6	5.6	5
f_b			11	21
nuclear absorp.				
$\sigma_{\rm abs} \ ({\rm mb})$	4.18	2.8	0 or 2.8	

- Most J/ψ are survivors from initially produced
- Kink in R_{AA} is due to the onset of initial temperature above the J/ ψ dissociation temperature in QGP
- Inclusion of shadowing reduces slightly R_{AA}

- Regeneration contribution is negligible
- Primordial excited bottomonia are largely dissociated
- Medium effects on bottomonia reduce R_{AA} of Y(1S)

Y(1S) nuclear modification factor at LHC from other models

2) Zhuang et al.,

3) Emerick, Zhao & Rapp, EPJA 48, 72 (2012)

4) Brezinzki & Wolschin, PLB 707, 534 (12): estimate using in-medium gluo-dissociation

Thermal decay width of Y(1S) in different models

- Thermal decay width
 - Rapp: quasielastic scattering
 - Zhuang: OPE by Peskin
 - Stricland: LO pQCD
 - Song: NLO pQCD

Very different thermal decay widths are used in different models

$$V_{2} = \frac{\int d\varphi \cos(2\varphi) (dN/dyd^{2}p_{T})}{\int d\varphi (dN/dyd^{2}p_{T})}$$

= $\frac{\int dA_{T} \cos(2\varphi) I_{2}(p_{T} \sinh \rho/T) K_{1}(m_{T} \cosh \rho/T)}{\int dA_{T} I_{0}(p_{T} \sinh \rho/T) K_{1}(m_{T} \cosh \rho/T)}$
 ρ =tanh(v_T)=transverse rapidity
Introducing viscous effect at freeze out
T=125 MeV

 $\Delta \mathbf{v} = (\mathbf{v}_{\mathbf{x}} - \mathbf{v}_{\mathbf{y}}) \exp[-\mathbf{C}\mathbf{p}_{\mathbf{T}}/\mathbf{n}]$

with C=1.14 GeV⁻¹ and n= number of quarks in a hadron

- Initially produced J/ ψ have essentially vanishing v_2
- Regenerated J/ ψ have large v_2
- Final $J/\psi v_2$ is small as most are initially produced

• Initial fluctuations affect R_{AA} of bottomonia in peripheral collisions and at $low_1 p_T$

<u>J/ ψ production in p+Pb at $\sqrt{s_{NN}} = 5.02$ TeV</u>

- Most central 10% collisions from AMPT
- Including hot medium effects better describes data

Summary

- J/ ψ survives up to 1.7 T_c and Y(1S) survives up to 4 T_c
- Most observed J/ψ and Y(1S) are from primordially produced; contribution from regeneration is small at present HIC
- Various models with different assumptions can describe experimental data
- Elliptic flow of regenerated J/ ψ is large, while that of directly produced ones is essentially zero. Studying v₂ of J/ ψ is useful for distinguishing the mechanism for J/ ψ production in HIC
- Initial fluctuations affect R_{AA} of bottomonia in peripheral collisions and at low p_T
- Hot medium effects describe better J/ψ data from p+Pb collisions