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Overview

e Matching (free-streaming) pre-equilibrium dynamics to viscous hydro and studying
sensitivity of observables to matching ( “thermalization”) time (Liu Jia).

e HBT correlation afterburner. HBT interferometry for fluctuating sources (Christo-
pher Plumberg).

e Viscous anisotropic hydrodynamics (Dennis Bazow)
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Pre-equilibrium dynamics (1)

Match pre-equilibrium TH*” to viscous hydrodynamic form, at varying matching times

Tmatch -

Extreme case: pre-equilibrium = free-streaming
—> large Timatch <> Slow thermalization; short Taten <> fast thermalization.

Study dependence of final observables on 7,,,,:cn and compare with pure hydro calculation
that assumes no evolution at all between 7 = 0 and Typerm = 0.7fm/c.

The following study by Jia Liu uses MC-KLN initial conditions for the gluon phase-space
distribution. Viscous hydro evolution with /s = 0.2.
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Pre-equilibrium dynamics (1)

Time evolution of radial flow for different switching times:
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Pre-equilibrium dynamics (1)

Final radial flow and average pr as function of switching time:
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Pre-equilibrium dynamics (1)

pr-spectra for thermal pions (left) and thermal protons (right) (Jia Liu, 2013):
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Late switching times > 2fm/c likely incompatible with experimental data.
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The corona problem:

For late switching times, the contribution from corona particles that never thermalize
can no longer be neglected:
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Problem: How to convert soft partons from the outer part of the hypersurface to
hadrons?!

Way out: Use energy flow instead of particle flow to define anisotropic flow coefficients.
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Pre-equilibrium dynamics (1V)

Energy anisotropic flow coefficients wo as proxy for pion anisotropic flows vs:
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Similar correlation holds for ws and proton vy, and for triangular energy and particle
flows.

JET Collaboration Meeting 2014, 6/18/2014 7(15)



Pre-equilibrium dynamics (V)

Final elliptic and triangular energy flow as function of switching time:
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Less constraining than radial flow and pr spectra.
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Toy model for the source
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€3: triangular azimuthal deformation
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7n¢: collective radial flow rapidity

b3 triangular flow velocity angle, points in direction of largest flow
rapidity and steepest descent of spatial density profile (note:
W, #£ 1, in general)
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Hanbury
Brown-Twiss
(HBT)
interferometry
relative to the
triangular flow
plane in
heavy-ion
collisions
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HBT oscillation amplitudes: two examples
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Hydrodynamic approach

g Hanbury K -dependence of R,% 3 from hydrodynamics
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Hydrodynamic approach

Hanbur _ 2 2 .1
Brown-Tvziss MJ‘ dependence Of RS,3/RS,0 from hydrOdynamlcs
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Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Hydrodynamic approach

M -dependence of Rg’3/R§70 from hydrodynamics
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Hydrodynamic approach

Hanbury M | -dependence of Rgs,a/Rg,o from hydrodynamics3
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Part 2: Conclusions

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event

fluctuations m VISH2+1 qualitatively reproduces general trends of
Christopher J PHENIX data

m Qualitative features of K| -dependence of hydrodynamic
R,-12-73 similar to toy model for small K|, more discrepancies
at K| 2 0.3 GeV

m Subtleties involving ensemble-averaging and the
construction of the correlation function have not been
addressed here
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Anisotropic hydrodynamics (AHYDRO) (I)
Martinez and Strickland 2009

A non-perturbative method to account for large shear viscous effects stemming from large difference

between longitudinal and transverse expansion rates.

f(z,p) = fiso \/pMHWA(w];V i = frs(z,p)

where =" (z) = u"(z)u” (z) + £(x) 2! () 2" x. (Romatschke&Strickland 2003)
3 flow and 3 “thermodynamic” parameters: v/ (x); A(x), p(x), £(x).

AHYDRO decomposition:
YA pr v v v
Jrs = NRsu”, Tts = ersutu” — PrA*Y 4 (Pp, — Pr)ztz",

where, for massless partons (m = 0), the effects of local momentum anisotropy can be factored out:

Nrs — <E>RS — RO(&)niso(Aa ﬁ)?
ers = (E>)rs = R(&)eiso(A, 1),
Pr = (pr ) rs = Rr.0(€) Puo(A, i).

(See Strickland's talk for R-functions.) The isotropic pressure is obtained from a locally isotropic EOS,

RSO(A /1) — ISO(GISO(A /1) niso(A ,a))
For massless noninteracting partons, P, (A, i) = %eis, (A, ii) independent of chemical composition.
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Viscous anisotropic hydrodynamics (VAHYDRO) (1)

f(x,p) = frs(x,p) + 5f($,p) = fiso (\/puEW/(iC)pu — ()

) +6f(z,p)

A(x)
Landau matching: THu” = eu” with ufu, =1 = fixes u”
no contribution to e, n from 4 f: (E); = (E)s =0 = fixes A, [i.
no contribution to Pr— Py, from 4 f: Ty R 22y () ) s = 0 = fixes €.

VAHYDRO decomposition:

Gt = i+ VH VH = <p<“>>g’
- ~ 1

H'—= 0 = 7" has 4 degrees of freedom.

ndl V) 7NN el V ) 4 . ~uv __ =
w, ™ = 7, = (xpx, Yy —22,2,) T = T

Strategy: solve hydrodynamic equations for AHYDRO (which treat Pr — P, nonper-
turbatively) with added viscous flows from ¢ f, together with IS-like “perturbative”
equations of motion for II, V#, 7wH",
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Viscous anisotropic hydrodynamics (VAHYDRO) (1)

Hydrodynamic equations of motion:

o, =C = fp C(x,p) = nrs = —ngrsb — 8M\~/“ + w in RTA

rel
0,T" =0 =
e — —(€+PT)9J_ — (6+PL)% — ﬁ@ -+ ,ﬁ.MVO-W/'

~ ~ . 5 Uy 1 A2 ~ L
(e4Pr+11)a, = —8, (Pp+11) — uy (Pr+I1) — u (Pp—Pp)%0 + ( S o y2 V) 8,7,

v

where 8, = O,u9g+V -u, and D = (uxf?y — uy(’?x)/uL.

(e+Pr+IDu,d, = —D (Pp+II) —

To derive equations of motion for II, V*, and 7#”, we follow DMNR (2012).
lgnoring heat conduction by setting g = 0 and taking m = 0 we find (Bazow, UH,
Strickland, 1311.6720)

v 1 U .
7 = 2,7y — [(P—PT)AW + (PL,—Pr)z"z" + ﬁ”y] + Ko + L7 + Hy A

Trel

F OV syt + X MOV az — 200 7MY 27 MY — 280 710,
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Test of vAHYDRO: (0+1)-dimensional expansion (1)

As you heard in Mike Strickland's talk, for (0+1)-d (longitudinally boost-invariant) expansion, the BE

can be solved exactly in RTA, and the solution can be used to test the various macroscopic hydrodynamic
approximation schemes.

Setting homogeneous initial conditions in r and 71, and zero transverse flow, 7" reduces to a single
non-vanishing component 7: 7" = diag(0, —7 /2, —7 /2, 7) at z = 0.

We use the factorization ngrs(EA) = Ro(€)nis(A) etc. to get EOMs for £, A, 7
¢ A 2 2

- S o 3/4
T 6A—T+Tml(1 VIFERY(©))

RO +1R©7 = - (RO +3Ru(©) 1+ 1,
B 1 - 38T
T = _Trel [(R(f) - 7QL(g))Piso(A) + 7T:| I

.

2[R (rae) - 1re@)) + (L5 8) (ro© — 1mi© ) | P,

Tdel and m/s are related by (Denicol, Koide, Rischke, PRL 105 (2010))

n/s . n/s
T CRUVA(EA
We solve these equations and compare with the exact solution:

Trel — 5
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Test of vAHYDRO: (0+1)-dimensional expansion (1)
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Test of vAHYDRO: (0+1)-dimensional expansion (I1)
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Advantages of VAHYDRO

For early times and/or near the transverse edge in heavy-ion collision fireballs, rapid
longitudinal expansion generates large inverse Reynolds numbers for the shear pressure,
R;l = w/7TW7TM,,/PiSO, causing Israel-Stewart second order viscous hydrodynamics to break
down.

The large local pressure anisotropies caused by a large difference in longitudinal and transverse
expansion rates can be treated efficiently by using the non-perturbative AHYDRO approach
which is based on an expanseion around a locally spheroidally deformed distribution fgs.

This strongly reduces the shear inverse Reynolds numbers fi;l — \/ﬁ“’/ﬁuy/Piso associated
with the remaining shear stress tensor 7" resulting from the much smaller deviation ¢ f of the
local distribution function from fgs.

VAHYDRO combines the advantages of AHYDRO with a complete (although perturbative)
second-order treatment of all remaining viscous effects a la Israel-Stewart.

In a test of (0+1)-d expansion, which maximizes the difference between longitudinal and
transverse expansion rates, against an exact solution of the Boltzmann equation, VAHYDRO
outperforms all other known hydrodynamic approximation schemes by a considerable margin.
This should open the door in (3+1)-d systems to match microscopic pre-equilibrium theories to
viscous hydrodynamics at earlier times than possible with 1S-theory and its variants.

By replacing f = foq+0f by f = frs+ S f we should be able to reduce uncertainties related
to & f corrections to the momentum distributions at freeze-out (or, for photons, everywhere)
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To do list:
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The to-do list for the next year — Pt |

o After some discussions with the bulk WG members, | have come up A
with a to-do list for the next year.

o | have also taken the liberty to add some things that | find particularly
interesting.

o The list | present is by no means a prioritized list. /

 Complete event-by-event all-stage dynamical simulations with
fluctuating initial conditions

 Completion of the jet quenching module (jet shower MC) and
couple it with iEBE (mostly work needed by the jet WG)

« Completion and publication of the iEBE documentation and the
code package (mostly done already)

e 2+1d and 3+1d NLO aHydro with fluctuating ICs (aka vaHydro)

* Lots of uncertainties associated with freeze-out. This is important
for how we fix the physical parameters that are used at all times
during the bulk evolution. Needs some critical attention.
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The to-do list for the next year — Pt li

* Anisotropic freezeout; instead of using linearly-corrected
distribution functions, use anisotropically deformed distribution
functions

e Systematic studies of pre-equilibrium dynamics on final observables

* Implementation and testing of the self-consistent initial conditions
(flow & rapidity dependence) from the CGC

 More studies of the impact of viscous (anisotropic) corrections to
electromagnetic signatures = necessary for experimental
determination of the degree of isotropization of the QGP

* Work needed on elimination of instabilities in the relativistic Lattice
Boltzmann solvers; work in progress at Colorado to implement “fO
stabilization”

 Squeeze B. Schenke hard to provide 2+1d and 3+1d MUSCL-based
hydro as an alternative to the current VISHNU hydro module.
Important to test dependence of results on the underlying hydro
module.


ulrichheinz
Highlight

ulrichheinz
Highlight

ulrichheinz
Highlight


Supplements
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4. Influence of pre-equilibrium stage (3)

e Construct anisotropy from Er distribution

e Good news: free-streamed distribution is known

dET 9i / 0 / 3 . .
i d “doo, filz, f t had
dydad z@: (27)3 ppiapi 5 pd°o, fi(z,p) (i for parton or hadron species)

* Apply to freeze-out surface:

dET

= Z (2%)3 /pOpLdpL/g Bl e 05
fo

dyd¢ 2fo E z \
dE )
i > dydrfbemqsdqﬁ

* Apply to outer surface: A

dET
dydo

> dydo
:Z (2%)3 /dQ(Ei/pidPLfi(%p) /

v

zJouter'



4. Influence of pre-equilibrium stage (4)

* Correlation with flow anisotropy v
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4. Influence of pre-equilibrium stage (4)

* Correlation with flow anisotropy vs
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