E-loss, radiative transport, viscous δf

Purdue group (Denes Molnar, Deke Sun, Zack Wolff, Dustin Hemphill, & Mridula Damodaran)

JET Collaboration Meeting at UC Davis, June 17-18, 2014

– Typeset by Foil $\rm T_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

GLV + bulk medium

DM & Deke Sun

– Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

$$\begin{aligned} \Delta E_{GLV}^{(1)}(z) &= \frac{C_R \alpha_s}{\pi^2} \chi \int dx \, d\mathbf{k} \, d\mathbf{q} \frac{\mu^2}{\pi (\mathbf{q}^2 + \mu^2)^2} \frac{2\mathbf{k} \cdot \mathbf{q}}{\mathbf{k}^2 (\mathbf{k} - \mathbf{q})^2} (1 - \cos \omega \Delta z) \\ E_{GLV} &= \int dz \, \rho \, \sigma_{gg \to gg} \Delta E_{GLV}(z) \end{aligned}$$

• transverse expansion halves v_2 at RHIC (also LHC)

DM & Sun, NPA901-911 ('13) & 1305.1046

BUT claim: $R_{AA}(\phi)$ works in 200-GeV at RHIC Betz & Gyulassy, 1305.6458

$$\frac{dE}{dL} = \kappa \frac{C_{jet}}{C_g} E^a L^b T^c(L)$$

with "pQCD-like" a = 1/3, b = 1, c = 2 - a + b = 8/3

Apparent contradiction, but calculations differ

- medium evolution
- energy loss model
- [- observable studied]

we resolved this \rightarrow hydro model/EOS(!) DM & Sun, arXiv:1405.4848

[–] Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

$$\frac{dN_{AA}}{d^2p_T} = \frac{dN_{AA}}{2\pi p_T dp_T} (1 + 2v_2 \cos 2\phi) \rightarrow R_{AA}(\phi, \Delta\phi) = R_{AA} \left(1 + 2v_2 \cos 2\phi \frac{\sin \Delta\phi}{\Delta\phi}\right)$$

pion v_2 phenix prl 105 ('10) vs $R_{AA}(0,\pi/6)$, $R_{AA}(\pi/2,\pi/6)$ phenix prc87 ('13)

\Rightarrow datasets are consistent

– Typeset by FoilT $_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Recheck results with four different hydro solutions...

from https://wiki.bnl.gov/TECHQM, computed VISH2+1 by OSU group

"older OSU" Song, Heinz, Moreland et al arXiv:0709.0742, 0712.3715, 0805.1756

i) ideal hydro, fKLN initial profile - "ideal fKLN"

ii) $\eta/s = 0.08$, fKLN profile - quite similar to i) in practice

"newer OSU" - Shen et al, arXiv:1010.1856; Renk et al, arXiv:1010.1635

iii) $\eta/s = 0.08$, Glauber profile - "visc. Glaub"

iv) $\eta/s = 0.08$, fKLN profile - "visc. fKLN"

newer set has most realistic s95-PCE EOS by Huovinen & Petrecky

all cases Au+Au at fixed $b \approx 8$ fm, smooth geometry

[–] Typeset by FoilT $_{E}$ X – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

older set: smoothed Bag Model EoS (SM-EOSQ) newer set: lattice QCD merged onto hadron gas (s95-PCE)

– Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

dE/dL model results for different media DM & Sun ('13)

all medium models with dE/dL look very similar to GLV + transport except "older" OSU hydro calculation that gives higher v_2

[–] Typeset by Foil $T_{\!E\!}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

results for different media DM & Sun, 1405.4848

GLV and "pQCD-like" dE/dL quite similar

– Typeset by Foil $T_{\!E\!}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Covariance

Problem: $dE/dL = const \times E^a L^b T^c$ encodes frame dependent physics

Suppose holds in fluid rest frame ($u_F = (1, \vec{0})$), rewrite it in covariant form. For massless particles ($|\vec{v}| = 1$):

$$\Delta E_{LR} = \Delta E \,\gamma_F (1 - \vec{v}\vec{v}_F), \qquad \Delta L_{LR} = \Delta L \,\gamma_F (1 - \vec{v}\vec{v}_F)$$

so covariantly

$$\frac{dE}{dL} = \frac{dE_{LR}}{dL_{LR}} = \kappa \left[\gamma_F (1 - \vec{v}\vec{v}_F)\right]^{a+b} E^a L^b T^c$$

\Rightarrow couples E-loss and medium flow

similar effect argued, e.g., in Baier, Mueller, Schiff nucl-th/0612068v3

Same arises in GLV, in

$$\Delta E = \frac{C_R \alpha_s}{\pi^2} \int dL \,\rho \,\sigma_{gg \to gg} \,I\left(\frac{\mu^2 L}{E}, \frac{E}{\mu}, \frac{M}{\mu}\right)$$

via $dL \rho \sigma \rightarrow dL_{LR} \rho_{LR} \sigma = dL \rho_{LR} \sigma \gamma_F (1 - \vec{v} \vec{v}_F) = dL \rho \sigma (1 - \vec{v} \vec{v}_F)$

[–] Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

covariant results for different media DM & Sun, 1405.4848

GLV and "pQCD-like" dE/dL quite similar

– Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

1D vs 3D still matters with naive GLV

– Typeset by FoilT $_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Message:

- nontrivial to get R_{AA} and v_2 simultaneously
- bulk medium background evolution matters
- covariance helps

Radiative transport MPC/Grid

DM & Dustin Hemphill & Mridula Damodaran

– Typeset by FoilT $_{E}$ X – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Radiative transport:

$$p\partial f = S + C_{2\to 2}[f] + C_{2\leftrightarrow 3}[f] + \dots$$

• Purdue code MPC/Grid for both single-CPU and parallel runs

5 useful knobs: cell sizes (d_x , d_y , d_z/d_η), timestep Δt , subdivision ℓ

Big question: does pQCD really thermalize as BAMPS claims?

– Typeset by FoilT $_{\rm E}$ X – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

need QCD rates

 $gg \leftrightarrow gg$:

$$\left|\bar{\mathcal{M}}\right|_{LO}^{2} = \frac{9g^{4}}{2} \left(3 - \frac{us}{t^{2}} - \frac{ts}{u^{2}} - \frac{ut}{s^{2}}\right) \sim \frac{9g^{4}s^{2}}{2} \left(\frac{1}{t^{2}} + \frac{1}{u^{2}}\right)$$
(1)

Debye screening: $1/t^2 \rightarrow \sim 1/(t-\mu^2)^2$

$$gg \leftrightarrow ggg$$
: e.g., Berends et al, PLB 103 ('81) $12 imes 10$ terms

$$\left|\bar{\mathcal{M}}\right|_{LO}^{2} = \frac{g^{6}N_{c}^{3}}{2(N_{c}^{2}-1)} \sum_{perms\{12345\}} \frac{1}{p_{12}p_{23}p_{34}p_{45}p_{51}} \times \sum_{i< j} p_{ij}^{4}, \qquad p_{ij} \equiv p_{i}p_{j} \qquad (2)$$

screened by hand: $p_{ij}
ightarrow p_i p_j + \mu^2$ Chen et al, PRD83 ('11)

or
$$\,\Theta(p_ip_j-\mu^2)\,$$
 Fochler et a

– Typeset by FoilT $_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

DM & Hemphill ('13) screened LO gg
ightarrow ggg

– Typeset by FoilT $_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

instead of LO pQCD $gg \leftrightarrow ggg$:

$$\left|\bar{\mathcal{M}}\right|_{LO}^{2} = \frac{g^{6}N_{c}^{3}}{2(N_{c}^{2}-1)} \sum_{perms\{12345\}} \frac{1}{p_{12}p_{23}p_{34}p_{45}p_{51}} \times \sum_{i< j} p_{ij}^{4} , \qquad p_{ij} \equiv p_{i}p_{j} \qquad (3)$$

BAMPS has Bertsch-Gunion form (valid for $q_T, k_T \ll \sqrt{s}$, $y \approx 0$)

$$\left|\bar{\mathcal{M}}\right|_{BG}^{2} = \frac{54g^{6}s^{2}}{\vec{q}_{T}^{2}\,\vec{k}_{T}^{2}\,(\vec{k}_{T}+\vec{q}_{T})^{2}} \quad \rightarrow \quad \frac{54g^{6}s^{2}q_{T}^{2}\,\Theta(k_{T}\mathrm{ch}y-1/\lambda_{MFP})}{(q_{T}^{2}+\mu^{2})^{2}k_{T}^{2}[(\vec{k}_{T}+\vec{q}_{T})^{2}+\mu^{2}]} \tag{4}$$

$$[p_3 = (k_T e^y, k_T e^{-y}, \vec{k}_T), \quad p_4 = (q_T e^{y_i}, q_T e^{-y_i}, \vec{q}_T), \quad p_5 = (\sqrt{s}, \sqrt{s}, 0_T) - p_3 - p_4]$$

many other choices possible, e.g., fully symmetric Bertsch-Gunion

$$\left|\bar{\mathcal{M}}\right|_{BG}^{2} = \frac{54g^{6}s^{2}}{(q_{T}^{2} + \mu^{2})(k_{T}^{2} + \mu^{2})[(\vec{k}_{T} + \vec{q}_{T})^{2} + \mu^{2}]}$$
(5)

– Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Total $\sigma_{gg ightarrow ggg}$

$$\sigma_{23}^{TOT} = \frac{1}{3!} \frac{1}{64\pi^5 s} \int \frac{d^3 p_3}{2E_3} \frac{d^3 p_4}{2E_4} \frac{d^3 p_5}{2E_5} |M_{12\to 345}|^2 \,\delta^4(p_1 + p_2 - p_3 - p_4 - p_5)$$

$$= \frac{1}{3!} \frac{1}{128\pi^4 s} \int_{-\infty}^{\infty} dy \int_{0}^{\sqrt{s}/(2 \operatorname{chy})} dk_T \int_{0}^{2\pi} d\varphi \int_{0}^{q_T^{max}} dq_T \,J(k_z, k_T, q_T, \varphi) \sum_{i=1}^{2} |M|_{(i)}^2$$

clear-cut calculation, of course depends on $|M_{gg \rightarrow ggg}|$ used

generically, for $\mu_D^2 \ll s$:

$$\sigma_{gg \to ggg} \sim \frac{\alpha_s^3}{\mu_D^2} \ln \frac{s}{\mu_D^2}$$

e.g., for fully symmetric BG: DM & Hemphill ('14):

$$\sigma_{gg \to ggg} = \frac{\alpha_s^3}{\mu_D^2} \left[\frac{31.64 \ln \frac{1}{z} - 35.80z^0 + \dots}{z} \right] \qquad (z \equiv \mu_D^2/s)$$

– Typeset by Foil $T_{\!E\!}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

DM & Hemphill ('14): analytic / numerical $\sigma_{gg
ightarrow ggg}$ for fully symmetric BG

– Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

$$\begin{split} \left|\bar{M}\right|_{BG}^{2} &= \frac{54g^{6}s^{2}\vec{q}_{T}^{2}}{(\vec{q}_{T}^{2}+\mu^{2})^{2}\left(\vec{k}_{T}^{2}+\mu^{2}\right)\left(\vec{r}_{T}^{2}+\mu^{2}\right)} \qquad \sigma_{23}^{TOT} = \frac{\alpha_{s}^{3}}{\mu^{2}}f\left(\frac{\mu^{2}}{s}\right) \\ \left|\bar{M}\right|_{LO}^{2} &= \frac{g^{6}N_{c}^{3}}{2\left(N_{c}^{2}-1\right)}\sum_{perms\{12345\}}\frac{1}{p_{12}p_{23}p_{34}p_{45}p_{51}} \times \sum_{i$$

– Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Permutation symmetry can be tricky if $|M|^2$ is approximated. E.g., in 2D:

$$\frac{1}{2!} \int_{0}^{1} dx \int_{0}^{1} dy \, |M|^{2}(x,y) \equiv \int_{0}^{1} dx \int_{x}^{1} dy \, |M|^{2}(x,y) \qquad \text{if } |M|^{2}(x,y) = |M|^{2}(y,x)$$

infinitely many equivalent ways to integrate over "half" space

But it does matter which one you take, <u>if</u> your $|M|^2$ breaks permutation symmetry - like Bertsch-Gunion. However, if approximation is valid over one half, and contributes little over the other half, then 2! may be dropped approximately.

[–] Typeset by Foil $\rm T_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

"improved" Bertsch-Gunion Fochler et al, 1302.5250

sum of all 6 improved BG permutations divided by 3 works at $\mu^2/s \approx 0.25$.

– Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

 $d\sigma_{2->3}/dy$

Thermal rates vs BAMPS

 $\gamma_{2 \to X} = (2/n) \int d^3 p_1 d^3 p_2 f_1 f_2 v_{rel} \sigma_{2 \to X}(s)$

DM & Hemphill ('13) & ('14)

Xu&Greiner, PRC71 ('05)

Thermal rates vs BAMPS

$$\gamma_{2\to X} = (2/n) \int d^3 p_1 d^3 p_2 f_1 f_2 v_{rel} \sigma_{2\to X}(s)$$

DM & Hemphill ('13) & ('14)

Xu&Greiner, PRC71 ('05)

– Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Equilibration in static box

• density estimate for central Au+Au (Glauber binary coll) at $\tau_0 = 0.6$ fm

$$n = \frac{1}{\tau_0} \frac{dN}{d\eta d^2 x_T} = \frac{1}{\tau_0} \frac{dN}{dy} \frac{T_A(\vec{x}_T) T_A(\vec{x}_T)}{T_{AB}(b=0)} \sim 25 \,\text{fm}^{-3} \text{ for } x_T = 0$$

[with thickness function $T_A(\vec{x}) = \int dz \, \rho_A(\sqrt{x^2 + z^2})$]

• momentum distribution: pQCD minijets $p_T > p_0$, with y = 0 $\frac{dN}{dy} \approx 1100 \quad \rightarrow \quad p_0 = 1.2 \,\text{GeV}$

('a la' old saturation model Eskola, Kajantie ('98))

• LO σ_{23} with fixed $\mu_D = gT_{fin} = gE_{TOT}/3N_{fin}$, $\alpha_s = 0.4$

for simplicity: use correct $\sigma_{23}(s)$ but isotropic outgoing momenta

– Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

– Typeset by FoilT $_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

– Typeset by Foil $\rm T_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

but BAMPS has local Debye mass from linear response e.g., Biro et al, PRC48

$$\mu_D^2[f] = 3\pi\alpha_s \int d^3p \, \frac{1}{p} \, f_g(\vec{p}) \qquad [f_{eq} = 16/(2\pi)^3 \times e^{-p/T}]$$

could matter out of equilibrium, so put it in (transverse \vec{x}_T average for statistics)

Watch out, this reproduces $\mu_D = gT$ with Bose distribution, but for Boltzmann:

$$\mu_D^2 = \frac{6}{\pi^2} g^2 T^2 \quad < \quad g^2 T^2 \quad \Rightarrow \quad \text{larger rates}(!)$$

[–] Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

– Typeset by FoilT $_{E}$ X – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

– Typeset by FoilT $_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

 $6 \times$ higher rate due to smaller μ_D because $\sigma_{gg \rightarrow ggg}$ is very sensitive to μ_D

Elliptic flow

- longitudinal boost Bjorken invariance
- $\tau_0 = 0.6 \text{ fm}$
- transverse density: Glauber (binary coll) profile

$$\frac{dN}{d\eta d^2 x_T} = \frac{dN}{d\eta} \times \frac{T_A(\vec{x}_T - \vec{b}/2)T_A(\vec{x}_T + \vec{b}/2)}{T_{AB}(b)}$$

- momentum distribution: locally thermal at $T_0 = 0.5 \text{ GeV}$
- fixed $\alpha_s = 0.4$, and dynamic $\mu_D[f]$ or $\mu_D \propto \tau^{-1/3}$

apply to RHIC Au+Au at b = 8 fm

RHIC Au+Au at b=8 fm, with $\mu_D=gT_0(\tau_0/\tau)^{1/3}$

– Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

RHIC Au+Au at b = 8 fm, dynamical μ_D vs $\mu_D = gT_0(\tau_0/\tau)^{1/3}$

dynamical μ_D helps a lot

result with dynamically screened $gg \rightarrow ggg$ is not the final word because

 \Rightarrow will need better constrained initconds (chemically better saturated)

[–] Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Message:

- hard to reproduce BAMPS results, not clear what they did
- \bullet big sensitivity to screening, dynamical μ_D looks crucial
- we get significantly smaller thermal rates than **BAMPS**

Self-consistent viscous δf

DM & Zack Wolff (& Qiang Zhang)

– Typeset by FoilT $_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Hydro \rightarrow particles

$$T^{\mu\nu}(x) \equiv \sum_{i} \int \frac{d^{3}p}{E} p^{\mu} p^{\nu} f_{i}(p,x)$$

• in local equilibrium (ideal hydro) - "one to one"

$$T_{LR}^{\mu\nu}(x) = diag(e, p, p, p) \qquad \Leftrightarrow \qquad f_{eq,i}(x, p) = \frac{g_i}{(2\pi)^3} e^{-p^{\mu} u_{\mu}/T}$$

• near local equilibrium (viscous hydro) - "few to many"

 $T^{\mu\nu}(x) = T^{\mu\nu}_{ideal}(x) + \pi^{\mu\nu}(x) \qquad \Leftarrow \qquad f(x,p) = f_{eq,i}(x,p) + \delta f_i(x,p)$

common choice - "democratic" Grad ansatz: $\delta f_i \equiv f_i^{eq} \times \frac{\pi^{\mu\nu}}{2(e+p)} \frac{p_{\mu,i}p_{\nu,i}}{T^2}$

2 dissipative effects: - corrections to equilibrium values u^{μ}, T, n - corrections to thermal distributions $f \rightarrow f_0 + \delta f$ Problem: "democratic Grad" ignores microscopic dynamics

$$\delta f_i \equiv f_i^{eq} \times \frac{\pi^{\mu\nu}}{2(e+p)} \frac{p_{\mu,i}p_{\nu,i}}{T^2}$$

instead of

$$\delta f_i \equiv f_i^{eq} \times \chi_i \left(\frac{\tilde{p}}{T}\right) \pi^{\mu\nu} \frac{p_{\mu,i}p_{\nu,i}}{T^2}$$

 \rightarrow use instead a nonequilibrium approach: linearized kinetic theory

DM, JPG38 ('11); DM & Wolff, arXiv:1404.7850

$$p^{\mu}\partial_{\mu}f_{eq,i} = \sum_{j} C_{ij}[f_{eq,i}, \delta f_j] + C_{ij}[\delta f_i, f_{eq,j}]$$

[–] Typeset by FoilT $_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

$$\delta f_j = \chi_j(p/T) \frac{p^\mu p^\nu \pi_{\mu\nu}}{2(e+p)T^2} f_{eq,j}$$

democratic:
$$\chi_j = \frac{\eta}{2s}$$
, dynamical Grad: $\chi_j = C_j \frac{\eta}{2s}$ ($\mu_B = 0$)

Dynamics of hadron gas matters \Rightarrow species dependent correction factors

 $\sigma_{ij} = \text{const}$

 $\sigma_{MM}: \sigma_{MB}: \sigma_{BB} = 4:6:9$

	T = 100	120	140	165 MeV		T=100	120	140	165 MeV
π	1.08	1.13	1.17	1.21	π	1.08	1.15	1.21	1.27
Κ	0.89	0.96	1.02	1.08	K	0.90	0.98	1.06	1.14
η	0.87	0.94	1.00	1.06	η	0.88	0.95	1.03	1.12
f_0	0.85	0.92	0.98	1.04	f_0	0.86	0.94	1.01	1.10
ρ	0.80	0.87	0.93	0.99	ho	0.80	0.88	0.96	1.04
ω	0.80	0.86	0.93	0.99	ω	0.80	0.88	0.95	1.04
K^* 892	0.77	0.83	0.90	0.96	K^* 892	0.77	0.85	0.92	1.01
Ν	0.76	0.82	0.88	0.94	N	0.56	0.62	0.68	0.74
$\eta'(958)$	0.75	0.82	0.88	0.94	$\eta^{\prime}(958)$	0.76	0.83	0.91	0.99
$f_0(980)$	0.75	0.81	0.87	0.93	$f_0(980)$	0.75	0.83	0.90	0.98
$a_0(980)$	0.75	0.81	0.87	0.93	$a_0(980)$	0.75	0.83	0.90	0.98
$\phi(1020)$	0.74	0.81	0.86	0.92	$\phi(1020)$	0.75	0.82	0.89	0.97
Λ	0.72	0.79	0.84	0.90	Λ	0.53	0.59	0.64	0.70

– Typeset by FoilT $_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

corrections drop with mass even for $\sigma_{ij} = const(!)$

one-component system in NR limit:

$$\chi^{Grad} = \frac{5\sqrt{\pi}}{32} \sqrt{\frac{T}{m}} \frac{T}{n\sigma_{TOT}} \quad \eta^{Grad}_s = \frac{5\sqrt{\pi}}{16} \frac{\sqrt{mT}}{\sigma_{TOT}}$$

two-component system in NR limit, with $n_B \ll n_A$:

$$\begin{split} \chi_{A}^{Grad}|_{n_{B}\to 0} &= \frac{5\sqrt{\pi}}{32}\sqrt{\frac{T}{m_{A}}\frac{T}{\sigma_{AA}n_{A}}} ,\\ \chi_{B}^{Grad}|_{n_{B}\to 0} &= \chi_{A}^{Grad}\frac{3(\mu+1)^{2}\sigma_{AA}+2\sqrt{2\mu(1+\mu)}\sigma_{AB}}{\sqrt{2\mu(1+\mu)}(3+5\mu)\sigma_{AB}} \qquad (\mu=\frac{m_{B}}{m_{A}}) \end{split}$$

[DM & Wolff, arXiv:1404.7850]

Affects v_2 at RHIC

– Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Also affects v_4 (and v_6)

 v_4 after resonance decays, with $\delta f \propto p^{3/2}$

– Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

RESO not super accurate

test of AZHYDRO/RESO, anno 1994 Sollfrank, Heinz et al

daughter spectra for static thermal resonance input, divide by convenient $\exp(const \times pT)$ factor

 $ho
ightarrow \pi \pi$

yield * exp(const*pT)

- Typeset by FoilT_EX - D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Hadron gas viscosity

with realistic $\sigma(s)$ for $\pi - \pi$ and $\pi - N$

or $\sigma_{MM} = 30$ mb for all hadrons up to ~ 1.7 GeV

– Typeset by Foil $T_{\!E\!}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

Message:

- viscous corrections depend on hadron species
- self-consistent δf_i can be obtained from kinetic theory
- dynamical treatment affects harmonic flow
- should explore more in hydro and hydro+transport models
 - \rightarrow use our tabulated corrections in Appendix F of arXiv:1404.7850 available for $\delta f \propto p^n$ with n=1, 1.5, 2

Year 5

- GLV + bulk dynamics (MPC/Eloss)
- running α_s , fluctuations in emission momenta/number
 - ightarrow ideally merge forces with Columbia
- heavy quarks with covariance
- radiative transport MPC/Grid
- shear viscosity
- truly local $\mu_D(x_T,\eta)$
- initconds/dynamics that reproduces basic RHIC/LHC observables
- viscous fluid-particle conversion (δf)
- bulk viscous δf
- self-consistent δf in hybrid hydro+transport approach
- dynamical hydro-transport coupling

[–] Typeset by Foil $\rm T_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014

MUST couple hydro and transport dynamically in shaded region below. From pure hydro, T = const hypersurface is physically inconsistent (ignores breakdown of hydro outside hypersurface).

[adapted from Fig. 2 of Huovinen & Ruuskanen, Ann. Rev. Nucl. Part. Sci. 56 ('06)]

– Typeset by Foil $\rm T_{E}X$ – D. Molnar @ JET Collab Mtg, Jun 17-18, 2014